Suppr超能文献

通过基于区域关联分数的可视化测试增强全基因组关联研究。

Empowering genome-wide association studies via a visualizable test based on the regional association score.

作者信息

Jiang Yiran, Zhang Heping

机构信息

Department of Biostatistics, Yale University, New Haven, CT 06511.

出版信息

Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2419721122. doi: 10.1073/pnas.2419721122. Epub 2025 Feb 25.

Abstract

The genome-wide association studies identified genes associated with many diseases, but the identification and verification of disease variants are still challenging due to small effects and large number of individual variants. In this paper, we propose a powerful method that first quantifies the strength of regional associations at each single nucleotide polymorphism and converts these measures into time series data before using a change point detection algorithm to identify significant regions. In our extensive simulation study, the proposed method consistently demonstrates greater power than existing alternatives, achieving a relative increase of over 20% in challenging scenarios where true causal variants are sparse and multiple association regions exist at the same time, while maintaining a lower false positive rate.

摘要

全基因组关联研究确定了与许多疾病相关的基因,但由于效应较小且个体变异数量众多,疾病变异的识别和验证仍然具有挑战性。在本文中,我们提出了一种强大的方法,该方法首先量化每个单核苷酸多态性处的区域关联强度,并将这些测量值转换为时间序列数据,然后使用变化点检测算法来识别显著区域。在我们广泛的模拟研究中,所提出的方法始终显示出比现有方法更强的功效,在真实因果变异稀少且同时存在多个关联区域的具有挑战性的场景中,实现了超过20%的相对增幅,同时保持较低的假阳性率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd40/11892588/5def8c7cbd69/pnas.2419721122fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验