Suppr超能文献

Structural Analysis of Cerebral Organoids Using Confocal Microscopy and Transmission/Scanning Electron Microscopy.

作者信息

Noh Seulgi, Park Yurim, Kim Beomsue, Mun Ji Young

机构信息

Neural Circuits Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea.

Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea.

出版信息

Microsc Microanal. 2025 Feb 17;31(1). doi: 10.1093/mam/ozae119.

Abstract

Cerebral organoid cultures from human-induced pluripotent stem cells are widely used to study complex human brain development; however, there is still limited ultrastructural information regarding the development. In this study, we examined the structural details of cerebral organoids using various microscopy techniques. Two protocols were chosen as representative methods for the development of brain organoids: the classic whole-cerebral organoid (Whole-CO) culture technique, and the air-liquid interface-cerebral organoid (ALI-CO) culture technique. Immunostained confocal laser scanning microscopy (CLSM) revealed the formation of the CTIP2- and TBR1-positive cortical deep layer on days 90 and 150, depending on the developmental progress of both methods. Furthermore, the presence of astrocytes and oligodendrocytes was verified through immunostained CLSM utilizing two-dimensional and three-dimensional reconstruction images after a 150-day period. Transmission electron microscopy analysis revealed nanometer-resolution details of the cellular organelles and neuron-specific structures including synapses and myelin. Large-area scanning electron microscopy confirmed the well-developed neuronal connectivity from each culture method on day 150. Using those microscopy techniques, we clearly showed significant details within two representative culture protocols, the Whole-CO and ALI-CO culture methods. These multi-level images provide ultrastructural insight into the features of cerebral organoids depending on the developmental stage.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验