Suppr超能文献

空间单细胞蛋白质组学全景解析肝内胆管癌的肿瘤微环境生态系统。

Spatial single-cell proteomics landscape decodes the tumor microenvironmental ecosystem of intrahepatic cholangiocarcinoma.

作者信息

Hong Libing, Mei Jie, Sun Xuqi, Wu Yifan, Dong Zhen, Jin Yuzhi, Gao Liaoliao, Cheng Jinlin, Tian Weihong, Liu Chuan, Li Bin, Hu Pingping, Liu Lulu, Xin Shan, Dai Xiaomeng, Zhao Peng, Guo Rongping, Chen Minshan, Yun Jingping, Lin Bo, Wei Wei, Fang Weijia, Bao Xuanwen

机构信息

Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.

出版信息

Hepatology. 2025 Feb 25. doi: 10.1097/HEP.0000000000001283.

Abstract

BACKGROUND AND AIMS

The prognoses and therapeutic responses of patients with intrahepatic cholangiocarcinoma (iCCA) depend on spatial interactions among tumor microenvironment (TME) components. However, the spatial TME characteristics of iCCA remain poorly understood. The aim of this study was to generate a comprehensive spatial atlas of iCCA using artificial intelligence-assisted spatial multiomics patterns and to identify spatial features associated with prognosis and immunotherapy.

APPROACH AND RESULTS

Spatial multiomics, including imaging mass cytometry (n=155 in-house), spatial proteomics (n=155 in-house), spatial transcriptomics (n=4 in-house), multiplex immunofluorescence (n=20 in-house), single-cell RNA sequencing (scRNA-seq, n=9 in-house and n=34 public), bulk RNA-seq (n=244 public), and bulk proteomics (n=110 in-house and n=214 public), were employed to elucidate the spatial TME of iCCA. More than 1.06 million cells were resolved, and the findings revealed that spatial topology, including cellular deposition patterns, cellular communities, and intercellular communications, profoundly correlates with the prognosis of patients with iCCA. Specifically, CD163 hi M2-like resident-tissue macrophages suppress antitumor immunity by directly interacting with CD8 + T cells, resulting in poorer patient survival. Additionally, 5 spatial subtypes with distinct prognoses were identified, and potential therapeutic options were generated for these subtypes. Furthermore, a spatial TME deep learning system was developed to predict the prognosis of patients with iCCA with high accuracy from a single 1-mm 2 tumor sample.

CONCLUSIONS

This study offers preliminary insights into the spatial TME ecosystem of iCCA, providing valuable foundations for precise patient classification and the development of personalized treatment strategies.

摘要

背景与目的

肝内胆管癌(iCCA)患者的预后和治疗反应取决于肿瘤微环境(TME)各成分之间的空间相互作用。然而,iCCA的空间TME特征仍知之甚少。本研究的目的是利用人工智能辅助的空间多组学模式生成iCCA的综合空间图谱,并识别与预后和免疫治疗相关的空间特征。

方法与结果

采用空间多组学技术,包括成像质谱流式细胞术(内部样本n = 155)、空间蛋白质组学(内部样本n = 155)、空间转录组学(内部样本n = 4)、多重免疫荧光(内部样本n = 20)、单细胞RNA测序(scRNA-seq,内部样本n = 9,公共样本n = 34)、批量RNA测序(公共样本n = 244)和批量蛋白质组学(内部样本n = 110,公共样本n = 214),以阐明iCCA的空间TME。解析了超过106万个细胞,研究结果表明,包括细胞沉积模式、细胞群落和细胞间通讯在内的空间拓扑结构与iCCA患者的预后密切相关。具体而言,CD163高表达的M2样驻留组织巨噬细胞通过与CD8 + T细胞直接相互作用抑制抗肿瘤免疫,导致患者生存率较低。此外,还鉴定出了5种具有不同预后的空间亚型,并为这些亚型制定了潜在的治疗方案。此外,还开发了一种空间TME深度学习系统,能够从单个1平方毫米的肿瘤样本中高精度预测iCCA患者的预后。

结论

本研究为iCCA的空间TME生态系统提供了初步见解,为精确的患者分类和个性化治疗策略的制定提供了有价值的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验