Suppr超能文献

[癫痫信号状态转移网络的采样间隔相关特征提取]

[Sampling intervals dependent feature extraction for state transfer networks of epileptic signals].

作者信息

Zhang Lei, Yan Shuang, Gu Changgui

机构信息

Department of Systems Science, Business School, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Dec 25;41(6):1128-1136. doi: 10.7507/1001-5515.202406023.

Abstract

Epileptic seizures and the interictal epileptiform discharges both have similar waveforms. And a method to effectively extract features that can be used to distinguish seizures is of crucial importance both in theory and clinical practice. We constructed state transfer networks by using visibility graphlet at multiple sampling intervals and analyzed network features. We found that the characteristics waveforms in ictal periods were more robust with various sampling intervals, and those feature network structures did not change easily in the range of the smaller sampling intervals. Inversely, the feature network structures of interictal epileptiform discharges were stable in range of relatively larger sampling intervals. Furthermore, the feature nodes in networks during ictal periods showed long-term correlation along the process, and played an important role in regulating system behavior. For stereo-electroencephalography at around 500 Hz, the greatest difference between ictal and the interictal epileptiform occurred at the sampling interval around 0.032 s. In conclusion, this study effectively reveals the correlation between the features of pathological changes in brain system and the multiple sampling intervals, which holds potential application value in clinical diagnosis for identifying, classifying, and predicting epilepsy.

摘要

癫痫发作和发作间期癫痫样放电都具有相似的波形。并且,一种有效提取可用于区分发作的特征的方法在理论和临床实践中都至关重要。我们通过在多个采样间隔使用可见性子图构建状态转移网络,并分析网络特征。我们发现发作期的特征波形在不同采样间隔下更稳健,并且那些特征网络结构在较小采样间隔范围内不容易改变。相反,发作间期癫痫样放电的特征网络结构在相对较大采样间隔范围内是稳定的。此外,发作期网络中的特征节点在整个过程中表现出长期相关性,并在调节系统行为中发挥重要作用。对于约500Hz的立体脑电图,发作期和发作间期癫痫样放电之间的最大差异出现在约0.032s的采样间隔处。总之,本研究有效揭示了脑系统病理变化特征与多个采样间隔之间的相关性,在癫痫的识别、分类和预测的临床诊断中具有潜在应用价值。

相似文献

4
Comparison of ictal and interictal EEG signals using fractal features.使用分形特征比较发作期和发作间期的 EEG 信号。
Int J Neural Syst. 2013 Dec;23(6):1350028. doi: 10.1142/S0129065713500287. Epub 2013 Sep 18.

本文引用的文献

2
Brain signal predictions from multi-scale networks using a linearized framework.基于线性化框架的多尺度网络的脑信号预测。
PLoS Comput Biol. 2022 Aug 12;18(8):e1010353. doi: 10.1371/journal.pcbi.1010353. eCollection 2022 Aug.
8
Visibility Graph Based Time Series Analysis.基于可见性图的时间序列分析
PLoS One. 2015 Nov 16;10(11):e0143015. doi: 10.1371/journal.pone.0143015. eCollection 2015.
9
Evaluation of scaling invariance embedded in short time series.短时间序列中嵌入的尺度不变性评估。
PLoS One. 2014 Dec 30;9(12):e116128. doi: 10.1371/journal.pone.0116128. eCollection 2014.
10
Effects of time lag and frequency matching on phase-based connectivity.时间滞后和频率匹配对基于相位的连通性的影响。
J Neurosci Methods. 2015 Jul 30;250:137-46. doi: 10.1016/j.jneumeth.2014.09.005. Epub 2014 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验