Narayanan Anantha, Stewart Tom, Duncan Scott, Pacheco Gail
School of Sport and Recreation, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
Faculty of Business, Economics and Law, Auckland University of Technology, Auckland, New Zealand.
Sci Rep. 2025 Feb 25;15(1):6831. doi: 10.1038/s41598-025-90852-0.
The growing acknowledgment of population wellbeing as a key indicator of societal prosperity has propelled governments worldwide to devise policies aimed at improving their citizens' overall wellbeing. In New Zealand, the General Social Survey provides wellbeing metrics for a representative subset of the population (~ 10,000 individuals). However, this sample size only provides a surface-level understanding of the country's wellbeing landscape, limiting our ability to comprehensively assess the impacts of governmental policies, particularly on smaller subgroups who may be of high policy interest. To overcome this challenge, comprehensive population-level wellbeing data is imperative. Leveraging New Zealand's Integrated Data Infrastructure, this study developed and validated the efficacy of three predictive models-Stepwise Linear Regression, Elastic Net Regression, and Random Forest-for predicting subjective wellbeing outcomes (life satisfaction, life worthwhileness, family wellbeing, and mental wellbeing) using census-level administrative variables as predictors. Our results demonstrated the Random Forest model's effectiveness in predicting subjective wellbeing, reflected in low RMSE values (~ 1.5). Nonetheless, the models exhibited low R values, suggesting limited explanatory capacity for the nuanced variability in outcome variables. While achieving reasonable predictive accuracy, our findings underscore the necessity for further model refinements to enhance the prediction of subjective wellbeing outcomes.
人口福祉作为社会繁荣的关键指标,这一认识的不断加深促使世界各国政府制定旨在改善公民整体福祉的政策。在新西兰,综合社会调查为具有代表性的一部分人口(约10,000人)提供福祉指标。然而,这个样本量仅能让我们对该国的福祉状况有一个表面的了解,限制了我们全面评估政府政策影响的能力,特别是对那些可能具有较高政策关注度的较小亚组的影响。为了克服这一挑战,全面的人口层面福祉数据势在必行。本研究利用新西兰的综合数据基础设施,开发并验证了三种预测模型——逐步线性回归、弹性网络回归和随机森林——的有效性,这些模型使用人口普查层面的行政变量作为预测因子来预测主观福祉结果(生活满意度、生活价值感、家庭福祉和心理健康)。我们的结果表明随机森林模型在预测主观福祉方面的有效性,这体现在较低的均方根误差值(约1.5)上。尽管如此,这些模型的R值较低,表明对结果变量细微变化的解释能力有限。虽然实现了合理的预测准确性,但我们的研究结果强调了进一步完善模型以增强对主观福祉结果预测的必要性。