Didloff Jenske, Boukes Gerhardt J, Nyambe Mutenta N, Beukes Denzil R, Lerata Mookho S, Vilane Velile, Lee Michael, Govender Sharlene, van de Venter Maryna
Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa.
Afrigen Biologics (Pty) Ltd., c/o South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
Antibiotics (Basel). 2025 Feb 11;14(2):179. doi: 10.3390/antibiotics14020179.
BACKGROUND/OBJECTIVES: Tuberculosis remains a major public health crisis, and it is imperative to search for new antimycobacterial drugs. Natural products, including medicinal macrofungi, have been used as sources for the discovery of pharmaceuticals; however, research on their antimycobacterial activity remains limited. This study aimed to isolate and identify the bioactive compound responsible for antimycobacterial activity, thereby expanding on the limited knowledge regarding the antimicrobial activity and bioactive compounds present in .
Bioassay-guided fractionation using column chromatography and preparative thin-layer chromatography were employed to isolate the active compound. Antimycobacterial activity against H37 was assessed using a resazurin microplate assay (REMA). The chemical structure was determined by H nuclear magnetic resonance (NMR) spectroscopy, heteronuclear single quantum coherence (HSQC) spectroscopy, heteronuclear multiple bond correlation (HMBC) spectroscopy, and high-resolution electrospray ionization mass (HR-ESI-MS) spectrometry. Transmission electron microscopy (TEM) was used to observe the ultrastructural changes in . induced by the compound. Cytotoxicity was evaluated in African green monkey kidney cells (Vero), human liver cells (C3A), and zebrafish embryos/larvae.
Bioassay-guided fractionation led to the isolation of gymnopilene, which showed inhibitory activity against . (MIC: 31.25 µg/mL). TEM analysis revealed that treatment with gymnopilene caused ultrastructural damage observed as the disruption and disintegration of the cell wall. While gymnopilene demonstrated cytotoxicity in Vero and C3A cells, no toxicity was observed in zebrafish embryos/larvae for the crude extract.
This study highlights that macrofungi, such as . , could be a valuable resource of bioactive compounds.
背景/目的:结核病仍然是一个重大的公共卫生危机,寻找新型抗分枝杆菌药物势在必行。包括药用大型真菌在内的天然产物一直被用作药物发现的来源;然而,关于它们抗分枝杆菌活性的研究仍然有限。本研究旨在分离和鉴定具有抗分枝杆菌活性的生物活性化合物,从而扩展关于[未提及的物质]中存在的抗菌活性和生物活性化合物的有限知识。
采用柱色谱和制备薄层色谱进行生物测定导向的分级分离,以分离活性化合物。使用刃天青微孔板测定法(REMA)评估对H37的抗分枝杆菌活性。通过氢核磁共振(NMR)光谱、异核单量子相干(HSQC)光谱、异核多键相关(HMBC)光谱和高分辨率电喷雾电离质谱(HR-ESI-MS)测定法确定化学结构。使用透射电子显微镜(TEM)观察该化合物诱导的[未提及的物质]中的超微结构变化。在非洲绿猴肾细胞(Vero)、人肝细胞(C3A)和斑马鱼胚胎/幼体中评估细胞毒性。
生物测定导向的分级分离导致裸盖菇烯的分离,其对[未提及的物质]显示出抑制活性(MIC:31.25μg/mL)。TEM分析表明,用裸盖菇烯处理导致超微结构损伤,表现为细胞壁的破坏和崩解。虽然裸盖菇烯在Vero和C3A细胞中表现出细胞毒性,但粗提物在斑马鱼胚胎/幼体中未观察到毒性。
本研究强调,诸如[未提及的物质]之类的大型真菌可能是生物活性化合物的宝贵来源。