Suppr超能文献

一项使用机器学习方法对囊性棘球蚴病进行分期的研究。

A Study on Staging Cystic Echinococcosis Using Machine Learning Methods.

作者信息

Tegshee Tuvshinsaikhan, Dorjsuren Temuulen, Lee Sungju, Batjargal Dolgorsuren

机构信息

Department of Information Technology, School of Information and Communication Technology, Mongolian University of Science and Technology, Ulaanbaatar 13341, Mongolia.

Department of Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, P.O. Box 48/111, S. Zorig Street-3, Ulaanbaatar 14210, Mongolia.

出版信息

Bioengineering (Basel). 2025 Feb 13;12(2):181. doi: 10.3390/bioengineering12020181.

Abstract

Cystic echinococcosis (CE) is a chronic parasitic disease characterized by slow progression and non-specific clinical symptoms, often leading to delayed diagnosis and treatment. Early and precise diagnosis is crucial for effective treatment, particularly considering the five stages of CE as outlined by the World Health Organization (WHO). This study explores the development of an advanced system that leverages artificial intelligence (AI) and machine learning (ML) techniques to classify CE cysts into stages using various imaging modalities, including computed tomography (CT), ultrasound (US), and magnetic resonance imaging (MRI). A total of ten ML algorithms were evaluated across these datasets, using performance metrics such as accuracy, precision, recall (sensitivity), specificity, and F1 score. These metrics offer diverse criteria for assessing model performance. To address this, we propose a normalization and scoring technique that consolidates all metrics into a final score, allowing for the identification of the best model that meets the desired criteria for CE cyst classification. The experimental results demonstrate that hybrid models, such as CNN+ResNet and Inception+ResNet, consistently outperformed other models across all three datasets. Specifically, CNN+ResNet, selected as the best model, achieved 97.55% accuracy on CT images, 93.99% accuracy on US images, and 100% accuracy on MRI images. This research underscores the potential of hybrid and pre-trained models in advancing medical image classification, providing a promising approach to improving the differential diagnosis of CE disease.

摘要

囊型包虫病(CE)是一种慢性寄生虫病,其特点是进展缓慢且临床症状不具特异性,常常导致诊断和治疗延迟。早期准确诊断对于有效治疗至关重要,尤其是考虑到世界卫生组织(WHO)所概述的CE的五个阶段。本研究探索了一种先进系统的开发,该系统利用人工智能(AI)和机器学习(ML)技术,通过包括计算机断层扫描(CT)、超声(US)和磁共振成像(MRI)在内的各种成像方式将CE囊肿进行分期。在这些数据集中共评估了十种ML算法,使用了诸如准确率、精确率、召回率(敏感性)、特异性和F1分数等性能指标。这些指标为评估模型性能提供了不同的标准。为了解决这个问题,我们提出了一种归一化和评分技术,将所有指标整合为一个最终分数,从而能够识别出符合CE囊肿分类所需标准的最佳模型。实验结果表明,诸如CNN+ResNet和Inception+ResNet等混合模型在所有三个数据集中始终优于其他模型。具体而言,被选为最佳模型的CNN+ResNet在CT图像上的准确率达到97.55%,在US图像上的准确率达到93.99%,在MRI图像上的准确率达到100%。本研究强调了混合模型和预训练模型在推进医学图像分类方面的潜力,为改善CE疾病的鉴别诊断提供了一种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de0f/11852189/5efb6b41831d/bioengineering-12-00181-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验