Suppr超能文献

用于淋巴结超声分类和远程诊断的语义注意力增强DSC变压器

Semantic-Attention Enhanced DSC-Transformer for Lymph Node Ultrasound Classification and Remote Diagnostics.

作者信息

Fu Ying, Tan Shi, Kadoch Michel, Zhong Jinghua, Guo Lifeng, Zhang Yangan, Huang Xiaohong, Yuan Xueguang

机构信息

Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China.

Department of Electrical Engineering, École de Technologie Supérieure, Université du Québec, Québec, QC J5A 0M3, Canada.

出版信息

Bioengineering (Basel). 2025 Feb 16;12(2):190. doi: 10.3390/bioengineering12020190.

Abstract

This study presents a novel Semantic-Attention Enhanced Dynamic Swin Convolutional Block Attention Module(CBAM) Transformer (DSC-Transformer) for lymph node ultrasound image classification. The model integrates semantic feature extraction and multi-scale attention mechanisms with the Swin Transformer architecture, enabling efficient processing of diagnostically significant regions while suppressing noise. Key innovations include semantic-driven preprocessing for localized diagnostic focus, adaptive compression for bandwidth-limited scenarios, and multi-scale attention modules for capturing both global anatomical context and local texture details. The model's effectiveness is validated through comprehensive experiments on diverse datasets and Grad-Channel Attention Module (CAM) visualizations, demonstrating superior classification performance while maintaining high efficiency in remote diagnostic settings. This semantic-attention enhancement makes the DSC-Transformer particularly effective for telemedicine applications, representing a significant advancement in AI-driven medical image analysis with broad implications for telehealth deployment.

摘要

本研究提出了一种用于淋巴结超声图像分类的新型语义注意力增强动态Swin卷积块注意力模块(CBAM)Transformer(DSC-Transformer)。该模型将语义特征提取和多尺度注意力机制与Swin Transformer架构相结合,能够在抑制噪声的同时高效处理具有诊断意义的区域。关键创新包括用于局部诊断聚焦的语义驱动预处理、用于带宽受限场景的自适应压缩以及用于捕获全局解剖背景和局部纹理细节的多尺度注意力模块。通过在不同数据集上进行的综合实验和Grad-通道注意力模块(CAM)可视化验证了该模型的有效性,证明了其在保持远程诊断设置高效率的同时具有卓越的分类性能。这种语义注意力增强使得DSC-Transformer在远程医疗应用中特别有效,代表了人工智能驱动的医学图像分析的重大进展,对远程医疗部署具有广泛影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78d3/11852314/accf5c20e374/bioengineering-12-00190-g009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验