Andleeb Ifrah, Hussain Bilal Zahid, Joncas Julie, Barchi Soraya, Roy-Beaudry Marjolaine, Parent Stefan, Grimard Guy, Labelle Hubert, Duong Luc
Department of Software and IT Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada.
Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77840, USA.
Diagnostics (Basel). 2025 Feb 13;15(4):452. doi: 10.3390/diagnostics15040452.
Adolescent idiopathic scoliosis (AIS) is a complex, three-dimensional spinal deformity that requires monitoring of skeletal maturity for effective management. Accurate bone age assessment is important for evaluating developmental progress in AIS. Traditional methods rely on ossification center observations, but recent advances in deep learning (DL) might pave the way for automatic grading of bone age. The goal of this research is to propose a new deep neural network (DNN) and evaluate class activation maps for bone age assessment in AIS using hand radiographs. We developed a custom neural network based on DenseNet201 and trained it on the RSNA Bone Age dataset. The model achieves an average mean absolute error (MAE) of 4.87 months on more than 250 clinical testing AIS patient dataset. To enhance transparency and trust, we introduced Score-CAM, an explainability tool that reveals the regions of interest contributing to accurate bone age predictions. We compared our model with the BoneXpert system, demonstrating similar performance, which signifies the potential of our approach to reduce inter-rater variability and expedite clinical decision-making. This study outlines the role of deep learning in improving the precision and efficiency of bone age assessment, particularly for AIS patients. Future work involves the detection of other regions of interest and the integration of other ossification centers.
青少年特发性脊柱侧凸(AIS)是一种复杂的三维脊柱畸形,需要监测骨骼成熟度以进行有效管理。准确的骨龄评估对于评估AIS的发育进程很重要。传统方法依赖于骨化中心观察,但深度学习(DL)的最新进展可能为骨龄自动分级铺平道路。本研究的目的是提出一种新的深度神经网络(DNN),并使用手部X光片评估AIS患者骨龄的类激活映射。我们基于DenseNet201开发了一个定制神经网络,并在RSNA骨龄数据集上对其进行训练。该模型在超过250例临床测试的AIS患者数据集上实现了平均平均绝对误差(MAE)为4.87个月。为了提高透明度和可信度,我们引入了Score-CAM,这是一种可解释性工具,可揭示有助于准确预测骨龄的感兴趣区域。我们将我们的模型与BoneXpert系统进行了比较,结果表明性能相似,这意味着我们的方法有可能减少评分者间的变异性并加快临床决策。这项研究概述了深度学习在提高骨龄评估的精度和效率方面的作用,特别是对于AIS患者。未来的工作包括检测其他感兴趣区域以及整合其他骨化中心。