Suppr超能文献

基于深度学习的全景X线片根尖周病变检测

Deep Learning-Based Periapical Lesion Detection on Panoramic Radiographs.

作者信息

Szabó Viktor, Orhan Kaan, Dobó-Nagy Csaba, Veres Dániel Sándor, Manulis David, Ezhov Matvey, Sanders Alex, Szabó Bence Tamás

机构信息

Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, 47 Szentkiralyi Str., 1088 Budapest, Hungary.

Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara 06100, Turkey.

出版信息

Diagnostics (Basel). 2025 Feb 19;15(4):510. doi: 10.3390/diagnostics15040510.

Abstract

: Our study aimed to determine the accuracy of the artificial intelligence-based Diagnocat system (DC) in detecting periapical lesions (PL) on panoramic radiographs (PRs). 616 teeth were selected from 357 panoramic radiographs, including 308 teeth with clearly visible periapical radiolucency and 308 without any periapical lesion. Three groups were generated: teeth with radiographic signs of caries (Group 1), teeth with coronal restoration (Group 2), and teeth with root canal filling (Group 3). The PRs were uploaded to the Diagnocat system for evaluation. The performance of the convolutional neural network in detecting PLs was assessed by its sensitivity, specificity, and positive and negative predictive values, as well as the diagnostic accuracy value. We investigated the possible effect of the palatoglossal air space (PGAS) on the evaluation of the AI tool. DC identified periapical lesions in 240 (77.9%) cases out of the 308 teeth with PL and detected no PL in 68 (22.1%) teeth with PL. The AI-based system detected no PL in any of the groups without PL. The overall sensitivity, specificity, and diagnostic accuracy of DC were 0.78, 1.00, and 0.89, respectively. Considering these parameters for each group, Group 2 showed the highest values at 0.84, 1.00, and 0.95, respectively. Fisher's Exact test showed that PGAS does not significantly affect ( = 1) the detection of PL in the upper teeth. The AI-based system showed lower probability values for detecting PL in the case of central incisors, wisdom teeth, and canines. The sensitivity and diagnostic accuracy of DC for detecting PL on canines showed lower values at 0.27 and 0.64, respectively. The CNN-based Diagnocat system can support the diagnosis of PL on PRs and serves as a decision-support tool during radiographic assessments.

摘要

我们的研究旨在确定基于人工智能的Diagnocat系统(DC)在全景X线片(PR)上检测根尖周病变(PL)的准确性。从357张全景X线片中选取了616颗牙齿,其中包括308颗根尖周有明显透射区的牙齿和308颗无任何根尖周病变的牙齿。分为三组:有龋齿影像学表现的牙齿(第1组)、有冠修复的牙齿(第2组)和有根管充填的牙齿(第3组)。将全景X线片上传至Diagnocat系统进行评估。通过其敏感性、特异性、阳性和阴性预测值以及诊断准确性值来评估卷积神经网络在检测根尖周病变方面的性能。我们研究了腭舌间隙(PGAS)对人工智能工具评估的可能影响。DC在308颗有根尖周病变的牙齿中识别出240例(77.9%)根尖周病变,在68颗(22.1%)有根尖周病变的牙齿中未检测到根尖周病变。基于人工智能的系统在无根尖周病变的任何一组中均未检测到根尖周病变。DC的总体敏感性、特异性和诊断准确性分别为0.78、1.00和0.89。考虑每组的这些参数,第2组的值最高,分别为0.84、1.00和0.95。Fisher精确检验表明,PGAS对上颌牙齿根尖周病变的检测无显著影响(P = 1)。基于人工智能的系统在检测中切牙、智齿和尖牙的根尖周病变时概率值较低。DC检测尖牙根尖周病变的敏感性和诊断准确性分别较低,为0.27和0.64。基于卷积神经网络的Diagnocat系统可支持全景X线片上根尖周病变的诊断,并在影像学评估中作为决策支持工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb37/11854226/129ed2c28c0c/diagnostics-15-00510-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验