Suppr超能文献

用于绝缘油局部放电分类的量子变分与量子核机器学习模型

Quantum Variational vs. Quantum Kernel Machine Learning Models for Partial Discharge Classification in Dielectric Oils.

作者信息

Monzón-Verona José Miguel, García-Alonso Santiago, Santana-Martín Francisco Jorge

机构信息

Electrical Engineering Department (DIE), University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.

Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.

出版信息

Sensors (Basel). 2025 Feb 19;25(4):1277. doi: 10.3390/s25041277.

Abstract

In this paper, electrical discharge images are classified using AI with quantum machine learning techniques. These discharges were originated in dielectric mineral oils and were detected by a high-resolution optical sensor. The captured images were processed in a Scikit-image environment to obtain a reduced number of features or qubits for later training of quantum circuits. Two quantum binary classification models were developed and compared in the Qiskit environment for four discharge binary combinations. The first was a quantum variational model (QVM), and the second was a conventional support vector machine (SVM) with a quantum kernel model (QKM). The execution of these two models was realized on three fault-tolerant physical quantum IBM computers. The novelty of this article lies in its application to a real problem, unlike other studies that focus on simulated or theoretical data sets. In addition, a study is carried out on the impact of the number of qubits in QKM, and it is shown that increasing the number of qubits in this model significantly improves the accuracy in the classification of the four binary combinations studied. In the QVM, with two qubits, an accuracy of 92% was observed in the first discharge combination in the three quantum computers used, with a margin of error of 1% compared to the simulation obtained on classical computers.

摘要

在本文中,利用量子机器学习技术通过人工智能对放电图像进行分类。这些放电发生在介电矿物油中,并由高分辨率光学传感器检测到。捕获的图像在Scikit-image环境中进行处理,以获得数量减少的特征或量子比特,用于随后量子电路的训练。针对四种放电二元组合,在Qiskit环境中开发并比较了两种量子二元分类模型。第一种是量子变分模型(QVM),第二种是带有量子核模型(QKM)的传统支持向量机(SVM)。这两种模型的执行在三台容错物理量子IBM计算机上实现。本文的新颖之处在于其应用于实际问题,这与其他专注于模拟或理论数据集的研究不同。此外,还研究了QKM中量子比特数量的影响,结果表明增加该模型中的量子比特数量可显著提高所研究的四种二元组合分类的准确性。在QVM中,使用两个量子比特时,在所使用的三台量子计算机上,第一种放电组合的准确率为92%,与在经典计算机上获得的模拟结果相比,误差幅度为1%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93fa/11860518/645a43a6676c/sensors-25-01277-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验