Jana Gourhari, Chattaraj Pratim Kumar
School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
Department of Chemistry, Birla Institute of Technology, Ranchi, Jharkhand, India.
Front Chem. 2025 Feb 11;13:1525140. doi: 10.3389/fchem.2025.1525140. eCollection 2025.
Hydrogen is a promising candidate for renewable energy storage and transportation due to its high energy density and zero carbon emissions. Its practical applications face challenges related to safe, efficient storage and release systems. This review article investigates advanced nanostructured materials for hydrogen storage, including metal acetylide and cyanide complexes, B,N-doped γ-graphyne nanotubes (γ-GNT), lithium-phosphide double helices, and Ni-decorated carbon-based clusters. Density Functional Theory (DFT) based computations are used to analyze binding energies, thermodynamic stability, and adsorption mechanisms. Ni-decorated CN nanoclusters demonstrate enhanced storage capacities, binding up to eight H molecules with a favorable N-(μ-Ni)-N configuration. Lithium-phosphide double helices show potential for 9.6 wt% hydrogen storage within a stable, semiconducting framework. Functionalization of γ-GNT with OLi at boron-doped sites significantly enhances storage potential, achieving optimal hydrogen binding energies for practical applications. Additionally, metal acetylide and cyanide complexes, stabilized by noble gas insertion, display thermodynamically favorable hydrogen adsorption. These results highlight the potential of these functionalized nanostructures for achieving high-capacity, reversible hydrogen storage. The nanostructures in this study, such as γ-graphyne nanotubes (γ-GNT), lithium-phosphide double helices, metal acetylide and cyanide complexes, and Ni-decorated carbon-based clusters, are selected based on their ability to exhibit complementary hydrogen adsorption mechanisms, including physisorption and chemisorption. γ-GNT offers high surface area and tunable electronic properties, ideal for physisorption enhanced by heteroatom doping. Lithium-phosphide double helices facilitate Kubas-like chemisorption through unsaturated lithium centers. Metal acetylide and cyanide complexes stabilize hydrogen adsorption via charge transfer and conjugated frameworks, while Ni-decorated clusters combine polarization-induced physisorption. These materials represent a strategic approach to addressing the challenges of hydrogen storage through diverse and synergistic mechanisms. The review also addresses challenges and outlines future directions to advance hydrogen's role as a sustainable fuel.
由于氢具有高能量密度和零碳排放,它是可再生能源存储和运输的一个有前景的候选者。其实际应用面临与安全、高效存储和释放系统相关的挑战。这篇综述文章研究了用于储氢的先进纳米结构材料,包括金属乙炔化物和氰化物配合物、B,N掺杂的γ-石墨炔纳米管(γ-GNT)、磷化锂双螺旋以及镍修饰的碳基簇。基于密度泛函理论(DFT)的计算被用于分析结合能、热力学稳定性和吸附机制。镍修饰的CN纳米簇显示出增强的存储容量,以有利的N-(μ-Ni)-N构型结合多达八个氢分子。磷化锂双螺旋在稳定的半导体框架内显示出9.6 wt%储氢的潜力。在硼掺杂位点用OLi对γ-GNT进行功能化显著增强了存储潜力,实现了实际应用中的最佳氢结合能。此外,通过稀有气体插入稳定的金属乙炔化物和氰化物配合物显示出热力学上有利的氢吸附。这些结果突出了这些功能化纳米结构在实现高容量、可逆储氢方面的潜力。本研究中的纳米结构,如γ-石墨炔纳米管(γ-GNT)、磷化锂双螺旋、金属乙炔化物和氰化物配合物以及镍修饰的碳基簇,是基于它们展现互补氢吸附机制(包括物理吸附和化学吸附)的能力而选择的。γ-GNT具有高表面积和可调节的电子性质,非常适合通过杂原子掺杂增强的物理吸附。磷化锂双螺旋通过不饱和锂中心促进类似库巴斯的化学吸附。金属乙炔化物和氰化物配合物通过电荷转移和共轭框架稳定氢吸附,而镍修饰的簇结合了极化诱导的物理吸附。这些材料代表了一种通过多样且协同的机制应对储氢挑战的策略性方法。该综述还讨论了挑战并概述了未来方向,以推动氢作为可持续燃料的作用。