Suppr超能文献

基于脑电图的手部运动及其参数识别。

EEG-based recognition of hand movement and its parameter.

作者信息

Yan Yuxuan, Li Jianguang, Yin Mingyue

机构信息

School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 15000, People's Republic of China.

出版信息

J Neural Eng. 2025 Mar 6;22(2). doi: 10.1088/1741-2552/adba8a.

Abstract

. Brain-computer interface is a cutting-edge technology that enables interaction with external devices by decoding human intentions, and is highly valuable in the fields of medical rehabilitation and human-robot collaboration. The technique of decoding motor intent for motor execution (ME) based on electroencephalographic (EEG) signals is in the feasibility study stage by now. There are still insufficient studies on the accuracy of ME EEG signal recognition in between-subjects classification to reach the level of realistic applications. This paper aims to investigate EEG signal-based hand movement recognition by analyzing low-frequency time-domain information.. Experiments with four types of hand movements, two force parameter (picking up and pushing) tasks, and a four-target directional displacement task were designed and executed, and the EEG data from thirteen healthy volunteers was collected. Sliding window approach is used to expand the dataset in order to address the issue of EEG signal overfitting. Furtherly, Convolutional Neural Network (CNN)-Bidirectional Long Short-Term Memory Network (BiLSTM) model, an end-to-end serial combination of a BiLSTM and (CNN) is constructed to classify and recognize the hand movement based on the raw EEG data.. According to the experimental results, the model is able to categorize four types of hand movements, picking up movements, pushing movements, and four target direction displacement movements with an accuracy of 99.14% ± 0.49%, 99.29% ± 0.11%, 99.23% ± 0.60%, and 98.11% ± 0.23%, respectively.. Furthermore, comparative tests conducted with alternative deep learning models (LSTM, CNN, EEGNet, CNN-LSTM) demonstrates that the CNN-BiLSTM model is with practicable accuracy in terms of EEG-based hand movement recognition and its parameter decoding.

摘要

脑机接口是一项前沿技术,它通过解码人类意图实现与外部设备的交互,在医疗康复和人机协作领域具有很高的价值。基于脑电图(EEG)信号解码运动执行(ME)的运动意图技术目前正处于可行性研究阶段。在个体间分类中,关于ME脑电信号识别准确性的研究仍不足,尚未达到实际应用的水平。本文旨在通过分析低频时域信息来研究基于脑电信号的手部运动识别。设计并执行了四种手部运动类型、两种力参数(拿起和推)任务以及一个四目标方向位移任务的实验,并收集了13名健康志愿者的脑电数据。采用滑动窗口方法来扩充数据集,以解决脑电信号过拟合问题。此外,构建了卷积神经网络(CNN)-双向长短期记忆网络(BiLSTM)模型,即BiLSTM和(CNN)的端到端串行组合,用于基于原始脑电数据对手部运动进行分类和识别。根据实验结果,该模型能够分别以99.14%±0.49%、99.29%±0.11%、99.23%±0.60%和98.11%±0.23%的准确率对手部运动的四种类型、拿起动作、推动作以及四个目标方向位移动作进行分类。此外,与其他深度学习模型(LSTM、CNN、EEGNet、CNN-LSTM)进行的对比测试表明,CNN-BiLSTM模型在基于脑电的手部运动识别及其参数解码方面具有切实可行的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验