Szymański Julian, Szefler Maciej, Karski Kacper, Krawczak Filip, Jankowski Damian
Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Narutowicza 11/13, Gdańsk, 80-233, Poland.
Sci Data. 2025 Feb 26;12(1):346. doi: 10.1038/s41597-025-04625-5.
The paper describes the dataset used for building machine learning models for labeling respiratory rate signals into four classes: breath-in, breath-out, and retentions after inhale and exhale. Additionally, we introduce a label to represent segments of the signal infected by noise. The data was collected simultaneously using different types of sensors: a tensometer and two accelerometers. The datasets have been made publicly available via the Gdansk University of Technology repository "Most Wiedzy", ensuring open access to the data and reproducibility of research on respiratory classification. Along with the data we also publish the source files of tools used for building the datasets as well as our implementation of the models for respiratory rate classification and visualization. The data have been stored in CSV format and organized through a directory structure according to different breath patterns. These datasets can be easily processed and converted for usage with different machine learning methods across various research applications in respiratory health.
本文描述了用于构建机器学习模型的数据集,该模型可将呼吸速率信号标记为四类:吸气、呼气以及吸气和呼气后的屏气。此外,我们引入了一个标签来表示受噪声影响的信号段。数据是使用不同类型的传感器同时收集的:一个张力计和两个加速度计。这些数据集已通过格但斯克工业大学的知识库“Most Wiedzy”公开提供,确保了数据的开放获取以及呼吸分类研究的可重复性。除了数据之外,我们还发布了用于构建数据集的工具的源文件,以及我们的呼吸速率分类和可视化模型的实现。数据已存储为CSV格式,并根据不同的呼吸模式通过目录结构进行组织。这些数据集可以很容易地进行处理和转换,以便在呼吸健康的各种研究应用中与不同的机器学习方法一起使用。