Suppr超能文献

用于从位点频率谱推断单一种群人口统计学历史的贝叶斯阶梯图。

Bayesian StairwayPlot for Inferring Single Population Demographic Histories From Site Frequency Spectra.

作者信息

Höhna Sebastian, Catalán Ana

机构信息

GeoBio-Center LMU, Ludwig-Maximilians-Universität München, Munich, Germany.

Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany.

出版信息

Mol Ecol Resour. 2025 Aug;25(6):e14087. doi: 10.1111/1755-0998.14087. Epub 2025 Feb 26.

Abstract

The StairwayPlot approach provides an elegant, flexible and powerful method to estimate complex demographic histories of single populations from site frequency spectrum data. It uses expected coalescent times to compute the expected site frequency spectrum within a multinomial likelihood function. Population sizes are allowed to vary freely between coalescent events but are constant within each interval. Here, we implement the StairwayPlot approach in the Bayesian software package RevBayes. We use approaches developed for Bayesian Skyline Plots, which include independent and identically distributed (i.i.d.) population sizes, Gaussian Markov random fields and Horseshoe Markov random fields as prior distributions on population sizes. Furthermore, we implement a recently developed approach for computing the leave-one-out cross-validation probability for efficient model selection. We compare inference from our Bayesian implementation to the original Maximum Likelihood implementation, StairwayPlot2. Our results show that our Bayesian implementation in RevBayes performs comparable to StairwayPlot2 in terms of parameter accuracy, which is expected given that both use the same underlying likelihood function. From our set of prior models, the Gaussian Markov random field prior performed best for smoothly varying demographic histories, while the Horseshoe Markov random field performs best for abruptly changing demographic histories. We conclude the study by exploring several choices often faced in empirical studies, including the estimate of the total sequence length, the assumed mutation rate, as well as biases through mis-calling ancestral alleles. We show using our empirical example that as few as 10 diploid individuals are sufficient to infer complex demographic histories, but at least 500 k single nucleotide polymorphisms (SNPs) are required.

摘要

阶梯图方法提供了一种优雅、灵活且强大的方法,可从位点频率谱数据估计单一种群复杂的人口历史。它使用期望的合并时间在多项似然函数内计算期望的位点频率谱。种群大小在合并事件之间可以自由变化,但在每个区间内是恒定的。在此,我们在贝叶斯软件包RevBayes中实现了阶梯图方法。我们使用为贝叶斯天际线图开发的方法,其中包括独立同分布(i.i.d.)的种群大小、高斯马尔可夫随机场和马蹄形马尔可夫随机场作为种群大小的先验分布。此外,我们实现了一种最近开发的计算留一法交叉验证概率以进行有效模型选择的方法。我们将贝叶斯实现的推断与原始的最大似然实现StairwayPlot2进行比较。我们的结果表明,我们在RevBayes中的贝叶斯实现在参数准确性方面与StairwayPlot2相当,鉴于两者使用相同的基础似然函数,这是预期的。在我们的一组先验模型中,高斯马尔可夫随机场先验对于平滑变化的人口历史表现最佳,而马蹄形马尔可夫随机场对于突然变化的人口历史表现最佳。我们通过探索实证研究中经常面临的几个选择来结束这项研究,包括总序列长度的估计、假定的突变率以及通过错误调用祖先等位基因产生的偏差。我们使用实证例子表明,仅10个二倍体个体就足以推断复杂的人口历史,但至少需要50万个单核苷酸多态性(SNP)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验