Suppr超能文献

用于预测早期类风湿关节炎(RA)未缓解情况的机器学习模型的开发凸显了RAID评分强大的预测重要性——来自北极研究的证据。

Development of machine learning models for predicting non-remission in early RA highlights the robust predictive importance of the RAID score-evidence from the ARCTIC study.

作者信息

Li Gaoyang, Kolan Shrikant S, Grimolizzi Franco, Sexton Joseph, Malachin Giulia, Goll Guro, Kvien Tore K, Paulshus Sundlisæter Nina, Zucknick Manuela, Lillegraven Siri, Haavardsholm Espen A, Skålhegg Bjørn Steen

机构信息

Division of Molecular Nutrition, Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.

Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway.

出版信息

Front Med (Lausanne). 2025 Feb 12;12:1526708. doi: 10.3389/fmed.2025.1526708. eCollection 2025.

Abstract

INTRODUCTION

Achieving remission is a critical therapeutic goal in the management of rheumatoid arthritis (RA). Despite methotrexate being the cornerstone of early RA treatment, a significant proportion of patients fail to achieve remission. This study aims to predict 6-month non-remission in 222 disease-modifying anti-rheumatic drug (DMARD)-naïve RA patients initiating methotrexate monotherapy, using baseline patient characteristics from the ARCTIC trial.

METHODS

Machine learning models were developed utilizing twenty-one baseline demographic, clinical and laboratory features to predict non-remission according to ACR/EULAR Boolean, SDAI and CDAI criteria. The model employed a super learner algorithm that combine three base algorithms of elastic net, random forest and support vector machine. The model performance was evaluated through five independent unseen tests with nested 5-fold cross-validation. The predictive power of each feature was assessed using a composite measure derived from individual algorithm estimates.

RESULTS

The model demonstrated a mean AUC-ROC of 0.75-0.76, with mean sensitivity of 0.77-0.81, precision (also referred to as Positive Predictive Value) of 0.77-0.79 and specificity of 0.63-0.66 across the criteria. Predictive power analysis of each feature identified the baseline Rheumatoid Arthritis Impact of Disease (RAID) score as the strongest predictor of non-remission. A simplified model using RAID score alone demonstrated comparable performance to the full-feature model.

CONCLUSION

These findings highlight the potential utility of baseline RAID score-based model as an effective tool for early identification of patients at risk of non-remission in clinical practise.

摘要

引言

实现缓解是类风湿关节炎(RA)管理中的关键治疗目标。尽管甲氨蝶呤是早期RA治疗的基石,但仍有相当一部分患者未能实现缓解。本研究旨在利用北极试验中的基线患者特征,预测222例初治甲氨蝶呤单药治疗的改善病情抗风湿药(DMARD)初治RA患者6个月内未缓解的情况。

方法

利用21项基线人口统计学、临床和实验室特征开发机器学习模型,根据美国风湿病学会/欧洲抗风湿病联盟(ACR/EULAR)布尔值、简化疾病活动指数(SDAI)和临床疾病活动指数(CDAI)标准预测未缓解情况。该模型采用了一种超级学习算法,该算法结合了弹性网络、随机森林和支持向量机这三种基本算法。通过五次独立的未见测试和嵌套的5折交叉验证来评估模型性能。使用从个体算法估计中得出的综合指标评估每个特征的预测能力。

结果

该模型在各项标准下的平均受试者工作特征曲线下面积(AUC-ROC)为0.75 - 0.76,平均灵敏度为0.77 - 0.81,精确率(也称为阳性预测值)为0.77 - 0.79,特异度为0.63 - 0.66。对每个特征的预测能力分析确定,基线类风湿关节炎疾病影响(RAID)评分是未缓解的最强预测指标。仅使用RAID评分的简化模型表现与全特征模型相当。

结论

这些发现凸显了基于基线RAID评分的模型作为临床实践中早期识别未缓解风险患者的有效工具的潜在效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验