Scienta Lab, Paris, France.
CentraleSupélec, Lab of Mathematics and Computer Science (MICS), Université Paris-Saclay, Gif-sur-Yvette, France.
Rheumatology (Oxford). 2023 Jul 5;62(7):2402-2409. doi: 10.1093/rheumatology/keac645.
Around 30% of patients with RA have an inadequate response to MTX. We aimed to use routine clinical and biological data to build machine learning models predicting EULAR inadequate response to MTX and to identify simple predictive biomarkers.
Models were trained on RA patients fulfilling the 2010 ACR/EULAR criteria from the ESPOIR and Leiden EAC cohorts to predict the EULAR response at 9 months (± 6 months). Several models were compared on the training set using the AUROC. The best model was evaluated on an external validation cohort (tREACH). The model's predictions were explained using Shapley values to extract a biomarker of inadequate response.
We included 493 therapeutic sequences from ESPOIR, 239 from EAC and 138 from tREACH. The model selected DAS28, Lymphocytes, Creatininemia, Leucocytes, AST, ALT, swollen joint count and corticosteroid co-treatment as predictors. The model reached an AUROC of 0.72 [95% CI (0.63, 0.80)] on the external validation set, where 70% of patients were responders to MTX. Patients predicted as inadequate responders had only 38% [95% CI (20%, 58%)] chance to respond and using the algorithm to decide to initiate MTX would decrease inadequate-response rate from 30% to 23% [95% CI: (17%, 29%)]. A biomarker was identified in patients with moderate or high activity (DAS28 > 3.2): patients with a lymphocyte count superior to 2000 cells/mm3 are significantly less likely to respond.
Our study highlights the usefulness of machine learning in unveiling subgroups of inadequate responders to MTX to guide new therapeutic strategies. Further work is needed to validate this approach.
约 30%的类风湿关节炎(RA)患者对甲氨蝶呤(MTX)治疗反应不足。本研究旨在利用常规临床和生物学数据构建预测 MTX 治疗反应不足的机器学习模型,并确定简单的预测生物标志物。
利用 ESPOIR 和莱顿 EAC 队列中符合 2010 年 ACR/EULAR 标准的 RA 患者的数据训练模型,以预测 9 个月(±6 个月)时的 EULAR 反应。使用 AUROC 在训练集上比较了几种模型。在外部验证队列(tREACH)上评估最佳模型。使用 Shapley 值解释模型预测结果,以提取反应不足的生物标志物。
我们纳入了来自 ESPOIR 的 493 个治疗序列、EAC 的 239 个和 tREACH 的 138 个。该模型选择 DAS28、淋巴细胞、肌酐、白细胞、AST、ALT、肿胀关节计数和皮质类固醇联合治疗作为预测因子。该模型在外部验证集上的 AUROC 为 0.72[95%CI(0.63,0.80)],其中 70%的患者对 MTX 有反应。预测为反应不足的患者仅有 38%[95%CI(20%,58%)]的机会有反应,使用该算法决定开始 MTX 治疗可将反应不足的发生率从 30%降至 23%[95%CI:(17%,29%)]。在活动度为中高度(DAS28>3.2)的患者中确定了一个生物标志物:淋巴细胞计数超过 2000 个/毫米 3 的患者反应明显较低。
本研究强调了机器学习在揭示 MTX 治疗反应不足的亚组以指导新的治疗策略方面的作用。需要进一步的工作来验证这种方法。