Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
Proc Natl Acad Sci U S A. 2019 May 21;116(21):10244-10249. doi: 10.1073/pnas.1903019116. Epub 2019 May 8.
Skeletal muscles possess the combinational properties of high fatigue resistance (1,000 J/m), high strength (1 MPa), low Young's modulus (100 kPa), and high water content (70 to 80 wt %), which have not been achieved in synthetic hydrogels. The muscle-like properties are highly desirable for hydrogels' nascent applications in load-bearing artificial tissues and soft devices. Here, we propose a strategy of mechanical training to achieve the aligned nanofibrillar architectures of skeletal muscles in synthetic hydrogels, resulting in the combinational muscle-like properties. These properties are obtained through the training-induced alignment of nanofibrils, without additional chemical modifications or additives. In situ confocal microscopy of the hydrogels' fracturing processes reveals that the fatigue resistance results from the crack pinning by the aligned nanofibrils, which require much higher energy to fracture than the corresponding amorphous polymer chains. This strategy is particularly applicable for 3D-printed microstructures of hydrogels, in which we can achieve isotropically fatigue-resistant, strong yet compliant properties.
骨骼肌具有高抗疲劳性(1000J/m)、高强度(1MPa)、低杨氏模量(100kPa)和高含水量(70 至 80wt%)等综合特性,这些特性在合成水凝胶中尚未实现。这些类似肌肉的特性对于水凝胶在承载人工组织和软设备中的新兴应用非常理想。在这里,我们提出了一种机械训练策略,以在合成水凝胶中实现骨骼肌的定向纳米纤维结构,从而获得综合的类似肌肉的特性。这些特性是通过训练诱导的纳米纤维取向获得的,而无需额外的化学修饰或添加剂。水凝胶断裂过程的原位共聚焦显微镜揭示了抗疲劳性源于定向纳米纤维对裂纹的钉扎,这需要比相应的无定形聚合物链更高的能量才能断裂。该策略特别适用于水凝胶的 3D 打印微结构,我们可以在其中实现各向同性的抗疲劳性、高强度和柔韧性。