Suppr超能文献

多巴胺研究中影响临时残疾评定量表(TDRL)模型的棘手细节。

The devilish details affecting TDRL models in dopamine research.

作者信息

Zhang Zhewei, Costa Kauê M, Langdon Angela J, Schoenbaum Geoffrey

机构信息

National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.

Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.

出版信息

Trends Cogn Sci. 2025 May;29(5):434-447. doi: 10.1016/j.tics.2025.02.001. Epub 2025 Feb 26.

Abstract

Over recent decades, temporal difference reinforcement learning (TDRL) models have successfully explained much dopamine (DA) activity. This success has invited heightened scrutiny of late, with many studies challenging the validity of TDRL models of DA function. Yet, when evaluating the validity of these models, the devil is truly in the details. TDRL is a broad class of algorithms sharing core ideas but differing greatly in implementation and predictions. Thus, it is important to identify the defining aspects of the TDRL framework being tested and to use state spaces and model architectures that capture the known complexity of the behavioral representations and neural systems involved. Here, we discuss several examples that illustrate the importance of these considerations.

摘要

在最近几十年里,时间差分强化学习(TDRL)模型成功地解释了许多多巴胺(DA)活动。这种成功近来引发了更严格的审查,许多研究对DA功能的TDRL模型的有效性提出了质疑。然而,在评估这些模型的有效性时,真正的问题在于细节。TDRL是一类广泛的算法,它们共享核心思想,但在实现和预测方面有很大差异。因此,识别正在测试的TDRL框架的定义方面,并使用能够捕捉所涉及行为表征和神经系统已知复杂性的状态空间和模型架构非常重要。在这里,我们讨论几个例子来说明这些考虑因素的重要性。

相似文献

本文引用的文献

1
Hippocampal output suppresses orbitofrontal cortex schema cell formation.海马体输出抑制眶额皮质模式细胞的形成。
Nat Neurosci. 2025 May;28(5):1048-1060. doi: 10.1038/s41593-025-01928-z. Epub 2025 Apr 14.
9
Explaining dopamine through prediction errors and beyond.通过预测误差解释多巴胺及其他。
Nat Neurosci. 2024 Sep;27(9):1645-1655. doi: 10.1038/s41593-024-01705-4. Epub 2024 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验