Suppr超能文献

用于染色归一化的深度监督两阶段生成对抗网络。

Deeply supervised two stage generative adversarial network for stain normalization.

作者信息

Du Zhe, Zhang Pujing, Huang Xiaodong, Hu Zhigang, Yang Gege, Xi Mengyang, Liu Dechun

机构信息

School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.

Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, Luoyang, China.

出版信息

Sci Rep. 2025 Feb 27;15(1):7068. doi: 10.1038/s41598-025-91587-8.

Abstract

The color variations present in histopathological images pose a significant challenge to computational pathology and, consequently, negatively affect the performance of certain pathological image analysis methods, especially those based on deep learning techniques. To date, several methods have been proposed to mitigate this issue. However, these methods either produce images with low texture retention, perform poorly when trained with small datasets, or have low generalization capabilities. In this paper, we propose a Deep Supervised Two-stage Generative Adversarial Network known as DSTGAN for stain-normalization. Specifically, we introduce deep supervision to generative adversarial networks in an innovative way to enhance the learning capacity of the model, benefiting from different model regularization methods. To make fuller use of source domain images for training the model, we drew upon semi-supervised concepts to design a novel two-stage staining strategy. Additionally, we construct a generator that can capture long-distance semantic relationships, enabling the model to retain more abundant texture information in the generated images. In the evaluation of the quality of generated images, we have achieved state-of-the-art performance on TUPAC-2016, MITOS-ATYPIA-14, ICIAR-BACH-2018 and MICCAI-16-GlaS datasets, improving the precision of classification and segmentation by 5.2% and 4.2%, respectively. Not only has our model significantly improved the quality of the stained images compared to existing stain normalization methods, but it also has a positive impact on the execution of downstream classification and segmentation tasks. Our method has further reduced the effect that staining differences have on computational pathology, thereby improving the accuracy of histopathological image analysis to some extent.

摘要

组织病理学图像中存在的颜色变化给计算病理学带来了重大挑战,因此对某些病理图像分析方法的性能产生负面影响,尤其是那些基于深度学习技术的方法。迄今为止,已经提出了几种方法来缓解这个问题。然而,这些方法要么生成的图像纹理保留度低,要么在使用小数据集训练时表现不佳,要么泛化能力低。在本文中,我们提出了一种用于染色归一化的深度监督两阶段生成对抗网络,称为DSTGAN。具体来说,我们以一种创新的方式将深度监督引入生成对抗网络,以增强模型的学习能力,受益于不同的模型正则化方法。为了更充分地利用源域图像来训练模型,我们借鉴半监督概念设计了一种新颖的两阶段染色策略。此外,我们构建了一个能够捕捉长距离语义关系的生成器,使模型能够在生成的图像中保留更丰富的纹理信息。在生成图像质量评估中,我们在TUPAC-2016、MITOS-ATYPIA-14、ICIAR-BACH-2018和MICCAI-16-GlaS数据集上取得了领先的性能,分类精度和分割精度分别提高了5.2%和4.2%。与现有的染色归一化方法相比,我们的模型不仅显著提高了染色图像的质量,而且对下游分类和分割任务的执行也有积极影响。我们的方法进一步减少了染色差异对计算病理学的影响,从而在一定程度上提高了组织病理学图像分析精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d5c/11868385/88e8290a81bb/41598_2025_91587_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验