文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

BACH:乳腺癌组织学图像的重大挑战。

BACH: Grand challenge on breast cancer histology images.

机构信息

INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto 4200-465, Portugal; Faculty of Engineering of University of Porto, Porto 4200-465, Portugal.

Seek AI Limited, Hong Kong, China.

出版信息

Med Image Anal. 2019 Aug;56:122-139. doi: 10.1016/j.media.2019.05.010. Epub 2019 May 31.


DOI:10.1016/j.media.2019.05.010
PMID:31226662
Abstract

Breast cancer is the most common invasive cancer in women, affecting more than 10% of women worldwide. Microscopic analysis of a biopsy remains one of the most important methods to diagnose the type of breast cancer. This requires specialized analysis by pathologists, in a task that i) is highly time- and cost-consuming and ii) often leads to nonconsensual results. The relevance and potential of automatic classification algorithms using hematoxylin-eosin stained histopathological images has already been demonstrated, but the reported results are still sub-optimal for clinical use. With the goal of advancing the state-of-the-art in automatic classification, the Grand Challenge on BreAst Cancer Histology images (BACH) was organized in conjunction with the 15th International Conference on Image Analysis and Recognition (ICIAR 2018). BACH aimed at the classification and localization of clinically relevant histopathological classes in microscopy and whole-slide images from a large annotated dataset, specifically compiled and made publicly available for the challenge. Following a positive response from the scientific community, a total of 64 submissions, out of 677 registrations, effectively entered the competition. The submitted algorithms improved the state-of-the-art in automatic classification of breast cancer with microscopy images to an accuracy of 87%. Convolutional neuronal networks were the most successful methodology in the BACH challenge. Detailed analysis of the collective results allowed the identification of remaining challenges in the field and recommendations for future developments. The BACH dataset remains publicly available as to promote further improvements to the field of automatic classification in digital pathology.

摘要

乳腺癌是女性最常见的侵袭性癌症,影响了全球超过 10%的女性。对活检进行微观分析仍然是诊断乳腺癌类型的最重要方法之一。这需要病理学家进行专门的分析,这项任务:i)非常耗时且昂贵;ii)并且经常导致不一致的结果。使用苏木精-伊红染色的组织病理学图像的自动分类算法的相关性和潜力已经得到了证明,但报告的结果仍然不能满足临床应用的要求。为了推进自动分类的最新技术,Grand Challenge on BreAst Cancer Histology images (BACH) 与第 15 届图像分析和识别国际会议 (ICIAR 2018) 一起组织。BACH 的目标是对来自大型注释数据集的显微镜和全切片图像中的临床相关组织病理学分类和定位进行分类和定位,这些数据集是专门为该挑战而编译和公开提供的。在科学界的积极响应下,共有 64 个参赛作品从 677 个注册作品中脱颖而出,有效地参加了比赛。提交的算法将乳腺癌显微镜图像的自动分类的最新技术提高到了 87%的准确率。卷积神经网络是 BACH 挑战赛中最成功的方法。对集体结果的详细分析确定了该领域中仍然存在的挑战,并为未来的发展提出了建议。BACH 数据集仍然公开可用,以促进数字病理学领域自动分类的进一步改进。

相似文献

[1]
BACH: Grand challenge on breast cancer histology images.

Med Image Anal. 2019-5-31

[2]
An end-to-end breast tumour classification model using context-based patch modelling - A BiLSTM approach for image classification.

Comput Med Imaging Graph. 2021-1

[3]
MuDeRN: Multi-category classification of breast histopathological image using deep residual networks.

Artif Intell Med. 2018-4-26

[4]
Breast cancer histopathological image classification using a hybrid deep neural network.

Methods. 2019-6-15

[5]
RegWSI: Whole slide image registration using combined deep feature- and intensity-based methods: Winner of the ACROBAT 2023 challenge.

Comput Methods Programs Biomed. 2024-6

[6]
Breast cancer pathological image classification based on deep learning.

J Xray Sci Technol. 2020

[7]
Boosted Additive Angular Margin Loss for breast cancer diagnosis from histopathological images.

Comput Biol Med. 2023-11

[8]
Dilated and soft attention-guided convolutional neural network for breast cancer histology images classification.

Microsc Res Tech. 2022-4

[9]
Fusion in Breast Cancer Histology Classification.

ACM BCB. 2019-9

[10]
Deep computational pathology in breast cancer.

Semin Cancer Biol. 2021-7

引用本文的文献

[1]
A generalizable pathology foundation model using a unified knowledge distillation pretraining framework.

Nat Biomed Eng. 2025-9-2

[2]
A Pilot Study of Breast Cancer Histopathological Image Classification Using Google Teachable Machine: A No-Code Artificial Intelligence Approach.

Cureus. 2025-7-4

[3]
Evaluating Vision and Pathology Foundation Models for Computational Pathology: A Comprehensive Benchmark Study.

Res Sq. 2025-7-4

[4]
Breast cancer detection based on histological images using fusion of diffusion model outputs.

Sci Rep. 2025-7-1

[5]
Artificial intelligence in pancreatic cancer histopathology and diagnostics - implications for clinical decisions and biomarker discovery?

Cell Div. 2025-6-17

[6]
PixCell: A generative foundation model for digital histopathology images.

ArXiv. 2025-6-5

[7]
Histopathological image based breast cancer diagnosis using deep learning and bio inspired optimization.

Sci Rep. 2025-5-30

[8]
Advanced Deep Learning Approaches in Detection Technologies for Comprehensive Breast Cancer Assessment Based on WSIs: A Systematic Literature Review.

Diagnostics (Basel). 2025-4-30

[9]
Stain Normalization of Histopathological Images Based on Deep Learning: A Review.

Diagnostics (Basel). 2025-4-18

[10]
Enhanced Superpixel-Guided ResNet Framework with Optimized Deep-Weighted Averaging-Based Feature Fusion for Lung Cancer Detection in Histopathological Images.

Diagnostics (Basel). 2025-3-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索