Gao Xiao, Qiao Kai, Wilson David M, Chaumeil Myriam M, Gordon Jeremy W
Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, United States.
Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California 94158, United States.
JACS Au. 2025 Feb 6;5(2):571-577. doi: 10.1021/jacsau.4c00888. eCollection 2025 Feb 24.
The positron emission tomography (PET) tracer 2-deoxy-2-[F]fluoroglucose ([F]FDG) is widely used to study diseases where glucose metabolism is dysregulated, including cancer and neurodegenerative disorders. Here we investigate the hypothesis that the 2-position deuterium-enriched analogue 2-deoxy-2-[H]-d-glucose (2-DG-d2) can also map glucose uptake using deuterium metabolic imaging (DMI) without ionizing radiation. To accomplish this, we used a spectrally selective multiband radiofrequency pulse and balanced steady-state free procession (bSSFP) technique, enabling rapid H imaging with high specificity and sensitivity to 2-DG-d2. Both and validations demonstrated the sequence's ability to suppress endogenous water signal. Mapping of 2-DG-d2 with high spatial resolution was achieved in healthy mouse brains, comparable to what might be obtained using [F]FDG PET. The numerous applications of [F]FDG PET, as well as recent clinical translation of the natural abundance 2-deoxy-d-glucose (2-DG) parent sugar, suggest that DMI using 2-DG-d2 may be applied to patients in the future.
正电子发射断层扫描(PET)示踪剂2-脱氧-2-[F]氟葡萄糖([F]FDG)被广泛用于研究葡萄糖代谢失调的疾病,包括癌症和神经退行性疾病。在此,我们研究了一种假说,即2位富含氘的类似物2-脱氧-2-[H]-d-葡萄糖(2-DG-d2)也可以通过氘代谢成像(DMI)在不使用电离辐射的情况下绘制葡萄糖摄取情况。为实现这一点,我们使用了光谱选择性多波段射频脉冲和平衡稳态自由进动(bSSFP)技术,能够对2-DG-d2进行具有高特异性和灵敏度的快速氢成像。体外和体内验证均证明了该序列抑制内源性水信号的能力。在健康小鼠大脑中实现了2-DG-d2的高空间分辨率映射,与使用[F]FDG PET可能获得的结果相当。[F]FDG PET的众多应用,以及天然丰度的2-脱氧-d-葡萄糖(2-DG)母体糖最近的临床转化,表明使用2-DG-d2的DMI未来可能应用于患者。