Woodman Stephanie J, Shah Dylan S, Landesberg Melanie, Agrawala Anjali, Kramer-Bottiglio Rebecca
Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA.
Sci Robot. 2024 Sep 11;9(94):eadn6844. doi: 10.1126/scirobotics.adn6844.
To achieve real-world functionality, robots must have the ability to carry out decision-making computations. However, soft robots stretch and therefore need a solution other than rigid computers. Examples of embedding computing capacity into soft robots currently include appending rigid printed circuit boards to the robot, integrating soft logic gates, and exploiting material responses for material-embedded computation. Although promising, these approaches introduce limitations such as rigidity, tethers, or low logic gate density. The field of stretchable electronics has sought to solve these challenges, but a complete pipeline for direct integration of single-board computers, microcontrollers, and other complex circuitry into soft robots has remained elusive. We present a generalized method to translate any complex two-layer circuit into a soft, stretchable form. This enabled the creation of stretchable single-board microcontrollers (including Arduinos) and other commercial circuits (including SparkFun circuits), without design simplifications. As demonstrations of the method's utility, we embedded highly stretchable (>300% strain) Arduino Pro Minis into the bodies of multiple soft robots. This makes use of otherwise inert structural material, fulfilling the promise of the stretchable electronic field to integrate state-of-the-art computational power into robust, stretchable systems during active use.
为实现现实世界中的功能,机器人必须具备进行决策计算的能力。然而,软体机器人会发生拉伸,因此需要一种不同于刚性计算机的解决方案。目前,将计算能力嵌入软体机器人的例子包括在机器人上附加刚性印刷电路板、集成软逻辑门以及利用材料响应进行材料嵌入式计算。尽管这些方法很有前景,但它们也带来了一些限制,比如刚性、系绳或低逻辑门密度。可拉伸电子领域一直在努力解决这些挑战,但将单板计算机、微控制器和其他复杂电路直接集成到软体机器人中的完整流程仍然难以实现。我们提出了一种通用方法,可将任何复杂的两层电路转换为柔软、可拉伸的形式。这使得我们能够创建可拉伸的单板微控制器(包括Arduino)和其他商业电路(包括SparkFun电路),而无需简化设计。作为该方法实用性的演示,我们将高度可拉伸(应变>300%)的Arduino Pro Mini嵌入到多个软体机器人的主体中。这利用了原本惰性的结构材料,实现了可拉伸电子领域在实际使用中将先进计算能力集成到坚固、可拉伸系统中的承诺。