Zhang Handan, Yang Tianfeng, Mu Wenyun, Peng Xiuhong, Liu Tao, Weng Lin, Wang Haoyu, Zhang Yanmin, Chen Xin
School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
Small. 2025 Apr;21(14):e2411299. doi: 10.1002/smll.202411299. Epub 2025 Feb 28.
Herein, an engineered nanocomposite (FZS) was constructed containing zinc-based nanozyme(ZS), Hemin and Ca ions with further surface modification of phospholipid and folic acid (FA) for primary and metastatic breast cancer therapy. During therapy, the FZS initially accumulated in tumor tissues through enhanced permeability and retention effectand FA receptor-mediated tumor-targeting delivery. After that, the FZS further dissociated to free Ca and Hemin loaded ZS in the acidic environment of lysosome. The resulting ZS then generated reactive oxygen species (ROS) and consumed glutathione via peroxidase and glutathione oxidase mimicking enzyme activities to induce the tumor-specific ferroptosis for primary tumor elimination, in which the ROS production could be further promoted by the Hemin catalyzed Fenton-likereactions to amplify oxidative damage and accelerate the ferroptosis. Furthermore, the ROS also influenced calcium metabolism of tumor cells, causingthe Ca-overloading and mitochondrial dysfunction in tumor cell salong with the introduction of exogenous Ca, which resulted in the suppression of adenosine triphosphate synthesis to hinder the energy supply of tumor cells for significant inhibition of tumor metastasis. Both in vitro and in vivo results demonstrated the remarkable therapeutic slmult1 efficiencyof FZS nanozyme in suppressing the growth and metastasis of breastcancer.
在此,构建了一种工程化纳米复合材料(FZS),其包含锌基纳米酶(ZS)、血红素和钙离子,并对磷脂和叶酸(FA)进行了进一步的表面修饰,用于原发性和转移性乳腺癌治疗。在治疗过程中,FZS最初通过增强的渗透和滞留效应以及FA受体介导的肿瘤靶向递送在肿瘤组织中积累。之后,FZS在溶酶体的酸性环境中进一步解离为游离的钙离子和负载血红素的ZS。产生的ZS随后通过过氧化物酶和谷胱甘肽氧化酶模拟酶活性产生活性氧(ROS)并消耗谷胱甘肽,以诱导肿瘤特异性铁死亡来消除原发性肿瘤,其中血红素催化的类芬顿反应可进一步促进ROS的产生,以放大氧化损伤并加速铁死亡。此外,ROS还影响肿瘤细胞的钙代谢,随着外源性钙离子的引入,导致肿瘤细胞内钙超载和线粒体功能障碍,从而抑制三磷酸腺苷的合成,阻碍肿瘤细胞的能量供应,显著抑制肿瘤转移。体外和体内结果均表明FZS纳米酶在抑制乳腺癌生长和转移方面具有显著的治疗效果。
J Nanobiotechnology. 2025-3-15
Nanomedicine (Lond). 2025-6-18