Suppr超能文献

基于原位生长的具有电容协同效应的层状CoS纳米颗粒的高性能锂离子电池负极

Superior performance lithium-ion battery anode based on CoS nanoparticles layered in-situ growth with capacitive synergy.

作者信息

Wang Shixin, Zhou Hui, Wei Hanjing, Wang Hailong, Xie Haolin, Xu Zhanyao, Ni Desheng, Li Chuanbo, Bollella Paolo, Li Junbai, Zhang Xiaoming

机构信息

School of Science, Minzu University of China, Beijing 100081, China; Optoelectronics Research Centre, Minzu University of China, Beijing 100081, China.

School of Science, Minzu University of China, Beijing 100081, China; Department of Chemistry, University of Bari Aldo Moro, Bari, Via E. Orabona, 4-70125, Italy; Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4-70125 Bari, Italy.

出版信息

J Colloid Interface Sci. 2025 Jun 15;688:505-516. doi: 10.1016/j.jcis.2025.02.140. Epub 2025 Feb 20.

Abstract

Identifying new anode materials that possess high energy density, outstanding cycling stability, and superior rate capability has emerged as a pivotal research focus in the development of lithium-ion batteries (LIBs). Herein, we successfully synthesized a novel CoS-MoB MBene heterostructure. This innovative material was developed through a space-confined growth process, wherein CoS nanoparticles were incorporated within the interstitial layers of MoB MBene, thereby creating a unique composite with enhanced electrochemical properties. The CoS-MoB MBene electrode showed excellent performance, retaining 756.34 mAh/g capacity after 200 cycles at 100 mA/g (initial capacity 828.67 mAh/g), with an impressive retention rate of 91.27 %. Even at a high current density (800 mA/g), the specific capacity of 632.1 mAh/g was maintained with a retention rate of 79.83 % after 700 cycles, and the Coulombic efficiency was consistently around 99 %. The excellent cycling stability and rate performance are attributed to the two-dimensional layered structure of conductive MoB MBene. Density functional theory (DFT) calculations reveal that MoB MBene's low lithium diffusion barrier significantly decreases the CoS's lithium binding energy, through rapid kinetic charge transfer, improving the efficiency of lithium-ion insertion and extraction. The incorporation of MoB MBene restricts the volume expansion of CoS during lithiation and delithiation, and facilitates the formation of surface capacitance and the development of diffusion-controlled pseudocapacitors. The excellent electrochemical performance suggests that the CoS-MoB MBene materials designed in this work can be a rational approach to be applied for high-performance LIBs anodes.

摘要

识别具有高能量密度、出色循环稳定性和卓越倍率性能的新型负极材料,已成为锂离子电池(LIBs)发展中的一个关键研究重点。在此,我们成功合成了一种新型的CoS-MoB MBene异质结构。这种创新材料是通过空间限制生长过程开发的,其中CoS纳米颗粒被纳入MoB MBene的间隙层中,从而形成一种具有增强电化学性能的独特复合材料。CoS-MoB MBene电极表现出优异的性能,在100 mA/g下循环200次后容量保持在756.34 mAh/g(初始容量828.67 mAh/g),保留率高达91.27%。即使在高电流密度(800 mA/g)下,700次循环后比容量仍保持在632.1 mAh/g,保留率为79.83%,且库仑效率始终保持在99%左右。优异的循环稳定性和倍率性能归因于导电MoB MBene的二维层状结构。密度泛函理论(DFT)计算表明,MoB MBene的低锂扩散势垒通过快速的动力学电荷转移显著降低了CoS的锂结合能,提高了锂离子嵌入和脱出的效率。MoB MBene的引入限制了CoS在锂化和脱锂过程中的体积膨胀,并促进了表面电容的形成和扩散控制赝电容器的发展。优异的电化学性能表明,本文设计的CoS-MoB MBene材料是一种应用于高性能LIBs负极的合理方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验