Guo Facheng, Gao Guizhen, Sun Qian, Guo Liang, Yang Yaru
College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China.
College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China.
Sci Total Environ. 2025 Mar 15;969:178902. doi: 10.1016/j.scitotenv.2025.178902. Epub 2025 Feb 28.
Pine wood nematodes (PWN, Bursaphelenchus xylophilus) cause widespread mortality in pine forests via pine wilt disease (PWD). The rapid death of diseased trees, which destroys biodiversity and significantly affects forest carbon storage, leading to negative environmental and economic consequences, as forests are crucial to the global carbon cycle. The interactions among PWN, hosts, and vector insects are closely linked to climate change. Climate warming has exacerbated changes in the geographic distribution of host tree species and vector insects, thereby increasing the rate and extent of PWD transmission. These interactions increase the risk of pine infection and can have far-reaching consequences for the health and stability of entire forest ecosystems. However, the global effects of climate change on these interactions are poorly understood. To fill this research gap and predict the potential impacts of climate change on the distribution of PWNs and vector insects in pine forests, we used the biomod2 integrated model to forecast their potential geographic distributions by 2050, 2070, and 2090 under three greenhouse gas emission scenarios (SSP126, SSP245, and SSP585). We analysed vector dominance and risk zones and found that potentially suitable areas for PWNs could migrate to higher latitudes in the future. The dominant vector insects, Monochamus alternatus, Monochamus carolinensis, and Monochamus saltuarius, exhibited a high ecological niche similarity to PWNs and their populations should be controlled. Additionally, high-risk areas for abiotic factors (environmental similarity) and biotic factors (hosts and vectors) will greatly expand in North America and Europe. Areas already infested by PWN will become high-risk zones for the conversion of carbon sinks to carbon sources. The modeled changes in the spatial and temporal patterns of PWN, hosts, and vector insects in this study provide a reference for developing management and conservation strategies for ensuring PWN control and improving future forest health.
松材线虫(PWN,Bursaphelenchus xylophilus)通过松材线虫病(PWD)导致松林大面积死亡。患病树木的迅速死亡破坏了生物多样性,并严重影响森林碳储存,由于森林对全球碳循环至关重要,这会导致负面的环境和经济后果。松材线虫、寄主和媒介昆虫之间的相互作用与气候变化密切相关。气候变暖加剧了寄主树种和媒介昆虫地理分布的变化,从而增加了松材线虫病传播的速度和范围。这些相互作用增加了松树感染的风险,并可能对整个森林生态系统的健康和稳定性产生深远影响。然而,气候变化对这些相互作用的全球影响仍知之甚少。为了填补这一研究空白,并预测气候变化对松林中松材线虫和媒介昆虫分布的潜在影响,我们使用biomod2综合模型,在三种温室气体排放情景(SSP126、SSP245和SSP585)下,预测它们到2050年、2070年和2090年的潜在地理分布。我们分析了媒介优势和风险区域,发现未来松材线虫的潜在适宜区域可能会向更高纬度迁移。优势媒介昆虫,即松墨天牛(Monochamus alternatus)、卡罗来纳墨天牛(Monochamus carolinensis)和跃松墨天牛(Monochamus saltuarius),与松材线虫表现出高度的生态位相似性,应控制它们的种群数量。此外,非生物因素(环境相似性)和生物因素(寄主和媒介)的高风险区域在北美和欧洲将大幅扩大。已经受到松材线虫侵染的地区将成为碳汇转化为碳源的高风险区域。本研究中模拟的松材线虫、寄主和媒介昆虫的时空格局变化,为制定确保松材线虫防治和改善未来森林健康的管理和保护策略提供了参考。