Sun Qixiang, He Ning, Yang Ping, Zhao Xing
School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China.
Smart City College, Beijing Union University, Beijing, 100101, China.
Comput Methods Programs Biomed. 2025 May;263:108673. doi: 10.1016/j.cmpb.2025.108673. Epub 2025 Feb 22.
Recent investigations into Low-Dose Computed Tomography (LDCT) reconstruction methods have brought Model-Based Data-Driven (MBDD) approaches to the forefront. One prominent architecture within MBDD entails the integration of Model-Based Iterative Reconstruction (MBIR) with Deep Learning (DL). While this approach offers the advantage of harnessing information from sinogram and image domains, it also reveals several deficiencies. First and foremost, the efficacy of DL methods within the realm of MBDD necessitates meticulous enhancement, as it directly impacts the computational cost and the quality of reconstructed images. Next, high computational costs and a high number of iterations limit the development of MBDD methods. Last but not least, CT reconstruction is sensitive to pixel accuracy, and the role of loss functions within DL methods is crucial for meeting this requirement.
This paper advances MBDD methods through three principal contributions. Firstly, we introduce an innovative Frequency Adjustment Network (FAN) that effectively adjusts both high and low-frequency components during the inference phase, resulting in substantial enhancements in reconstruction performance. Second, we develop the Momentum-based Frequency Adjustment Network (MFAN), which leverages momentum terms as an extrapolation strategy to facilitate the amplification of changes throughout successive iterations, culminating in a rapid convergence framework. Lastly, we delve into the visual properties of CT images and present a unique loss function named Focal Detail Loss (FDL). The FDL function preserves fine details throughout the training phase, significantly improving reconstruction quality.
Through a series of experiments validation on the AAPM-Mayo public dataset and real-world piglet datasets, the aforementioned three contributions demonstrated superior performance. MFAN achieved convergence in 10 iterations as an iteration method, faster than other methods. Ablation studies further highlight the advanced performance of each contribution.
This paper presents an MBDD-based LDCT reconstruction method using a momentum-based frequency adjustment network with a focal detail loss function. This approach significantly reduces the number of iterations required for convergence while achieving superior reconstruction results in visual and numerical analyses.
近期对低剂量计算机断层扫描(LDCT)重建方法的研究使基于模型的数据驱动(MBDD)方法成为前沿。MBDD中的一种突出架构涉及基于模型的迭代重建(MBIR)与深度学习(DL)的集成。虽然这种方法具有利用来自正弦图和图像域信息的优势,但也存在一些缺陷。首先,MBDD领域内DL方法的有效性需要精心改进,因为它直接影响计算成本和重建图像的质量。其次,高计算成本和大量迭代限制了MBDD方法的发展。最后但同样重要的是,CT重建对像素精度敏感,DL方法中损失函数的作用对于满足这一要求至关重要。
本文通过三个主要贡献推进了MBDD方法。首先,我们引入了一种创新的频率调整网络(FAN),它在推理阶段有效地调整高频和低频分量,从而显著提高重建性能。其次,我们开发了基于动量的频率调整网络(MFAN),它利用动量项作为外推策略,以促进在连续迭代中变化的放大,最终形成一个快速收敛框架。最后,我们深入研究了CT图像的视觉特性,并提出了一种名为焦点细节损失(FDL)的独特损失函数。FDL函数在整个训练阶段保留精细细节,显著提高重建质量。
通过在AAPM - 梅奥公共数据集和实际仔猪数据集上进行的一系列实验验证,上述三项贡献表现出卓越的性能。作为一种迭代方法,MFAN在10次迭代中实现了收敛,比其他方法更快。消融研究进一步突出了每项贡献的先进性能。
本文提出了一种基于MBDD的LDCT重建方法,该方法使用具有焦点细节损失函数的基于动量的频率调整网络。这种方法显著减少了收敛所需的迭代次数,同时在视觉和数值分析中取得了卓越的重建结果。