Suppr超能文献

用于内部断层扫描的傅里叶增强高阶全变差(FeHOT)迭代网络。

Fourier-enhanced high-order total variation (FeHOT) iterative network for interior tomography.

作者信息

Ma Genwei, Zhao Xing, Zhu Yining, Luo Ting

机构信息

The Academy for Multidisciplinary Studies, Captial Normal University, Beijing, People's Republic of China.

School of Mathematical Sciences, Captial Normal University, Beijing, People's Republic of China.

出版信息

Phys Med Biol. 2025 Apr 23;70(9). doi: 10.1088/1361-6560/adc8f6.

Abstract

. Determining a satisfactory solution for different computed tomography (CT) fields has been a long-standing challenge in the interior tomography, Traditional methods like FBP suffer from low contrast, while deep learning approaches often lack data consistency. The goal is to leverage high-order total variation (HOT) regularization and Fourier-based frequency domain enhancement to achieve high-precision reconstruction from truncated projection data while overcoming limitations such as slow convergence, over-smoothing, and loss of high-frequency details in existing methods.. The proposed Fourier-enhanced HOT (FeHOT) network employs a coarse-to-fine strategy. First, a HOT-based unrolled iterative network accelerates coarse reconstruction using a learned primal-dual algorithm for data consistency and implicit high-order gradient constraints. Second, a Fourier-enhanced U-Net module selectively attenuates low-frequency components in skip connections while amplifying high-frequency features from filtered back-projection (FBP) results, preserving edge and texture details. Frequency-dependent scaling factors are introduced to balance spectral components during refinement.. Experiments on the AAPM and clinical medical datasets demonstrate FeHOT's superiority over competing methods (FBP, HOT, AG-Net, PD-Net). For the medical dataset, FeHOT achieved PSNR = 41.17 (noise-free) and 39.24 (noisy), outperforming PD-Net (33.42/31.08) and AG-Net (33.41/31.31). Meanwhile, For the AAPM dataset, where imaged objects exhibit piecewise constant properties, first-order total variation achieved satisfactory results. In contrast, for clinical medical datasets with non-piecewise-constant characteristics (e.g. complex anatomical structures), FeHOT's second-order regularization better aligned with the high-quality requirements of interior tomography. Ablation studies confirmed the necessity of Fourier enhancement, showing significant improvements in edge preservation (e.g. SSIM increased from 0.9877 to 0.9976 for noise-free cases). The method achieved high-quality reconstruction within five iterations, reducing computational costs.. FeHOT represents a paradigm shift in interior tomography by: 1) Bridging classical HOT theory with deep learning through an iterative unrolling framework. 2) Introducing frequency-domain operations to overcome the limitations of polynomial/piecewise-constant assumptions in CT images. 3) Enabling high-quality reconstruction in just five iterations, balancing computational efficiency with accuracy. This method offers a promising solution for low-dose, precise imaging in clinical and industrial applications.

摘要

为不同的计算机断层扫描(CT)领域确定一个令人满意的解决方案一直是内部断层扫描中一个长期存在的挑战。传统方法如滤波反投影(FBP)存在对比度低的问题,而深度学习方法往往缺乏数据一致性。目标是利用高阶全变差(HOT)正则化和基于傅里叶变换的频域增强,从截断投影数据中实现高精度重建,同时克服现有方法中收敛速度慢、过度平滑和高频细节丢失等局限性。所提出的傅里叶增强HOT(FeHOT)网络采用了从粗到细的策略。首先,基于HOT的展开迭代网络使用学习到的原始对偶算法加速粗重建,以实现数据一致性和隐式高阶梯度约束。其次,傅里叶增强U-Net模块在跳跃连接中选择性地衰减低频分量,同时放大滤波反投影(FBP)结果中的高频特征,保留边缘和纹理细节。引入频率相关的缩放因子在细化过程中平衡频谱分量。在AAPM和临床医学数据集上的实验证明了FeHOT相对于竞争方法(FBP、HOT、AG-Net、PD-Net)的优越性。对于医学数据集,FeHOT在无噪声情况下实现了PSNR = 41.17,在有噪声情况下实现了PSNR = 39.24,优于PD-Net(33.42/31.08)和AG-Net(33.41/31.31)。同时,对于AAPM数据集,其中成像对象表现出分段常数特性,一阶全变差取得了令人满意的结果。相比之下,对于具有非分段常数特征的临床医学数据集(例如复杂的解剖结构),FeHOT的二阶正则化更符合内部断层扫描的高质量要求。消融研究证实了傅里叶增强的必要性,显示出在边缘保留方面有显著改进(例如,在无噪声情况下,结构相似性指数(SSIM)从0.9877提高到0.9976)。该方法在五次迭代内实现了高质量重建,降低了计算成本。FeHOT在内部断层扫描方面代表了一种范式转变,具体体现在:1)通过迭代展开框架将经典HOT理论与深度学习联系起来。2)引入频域操作以克服CT图像中多项式/分段常数假设的局限性。3)仅需五次迭代就能实现高质量重建,在计算效率和准确性之间取得平衡。该方法为临床和工业应用中的低剂量、精确成像提供了一个有前景的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验