Suppr超能文献

基于无数据集学习的低剂量 CT 重建。

Low-dose CT reconstruction using dataset-free learning.

机构信息

College of Big Data and Software Engineering, Zhejiang Wanli University, Ningbo, Zhejiang, China.

出版信息

PLoS One. 2024 Jun 14;19(6):e0304738. doi: 10.1371/journal.pone.0304738. eCollection 2024.

Abstract

Low-Dose computer tomography (LDCT) is an ideal alternative to reduce radiation risk in clinical applications. Although supervised-deep-learning-based reconstruction methods have demonstrated superior performance compared to conventional model-driven reconstruction algorithms, they require collecting massive pairs of low-dose and norm-dose CT images for neural network training, which limits their practical application in LDCT imaging. In this paper, we propose an unsupervised and training data-free learning reconstruction method for LDCT imaging that avoids the requirement for training data. The proposed method is a post-processing technique that aims to enhance the initial low-quality reconstruction results, and it reconstructs the high-quality images by neural work training that minimizes the ℓ1-norm distance between the CT measurements and their corresponding simulated sinogram data, as well as the total variation (TV) value of the reconstructed image. Moreover, the proposed method does not require to set the weights for both the data fidelity term and the plenty term. Experimental results on the AAPM challenge data and LoDoPab-CT data demonstrate that the proposed method is able to effectively suppress the noise and preserve the tiny structures. Also, these results demonstrate the rapid convergence and low computational cost of the proposed method. The source code is available at https://github.com/linfengyu77/IRLDCT.

摘要

低剂量计算机断层扫描(LDCT)是降低临床应用中辐射风险的理想选择。虽然基于监督深度学习的重建方法在性能上优于传统的基于模型的重建算法,但它们需要收集大量的低剂量和标准剂量 CT 图像对神经网络进行训练,这限制了它们在 LDCT 成像中的实际应用。在本文中,我们提出了一种用于 LDCT 成像的无监督且无需训练数据的学习重建方法,避免了对训练数据的需求。所提出的方法是一种后处理技术,旨在增强初始低质量重建结果,并通过神经网络训练来重建高质量图像,该方法通过最小化 CT 测量值与其相应模拟射线数据之间的 ℓ1 范数距离以及重建图像的总变差(TV)值来实现。此外,该方法无需为数据保真度项和大量项设置权重。在 AAPM 挑战赛数据和 LoDoPab-CT 数据上的实验结果表明,所提出的方法能够有效地抑制噪声并保留微小结构。此外,这些结果还表明了所提出的方法具有快速收敛和低计算成本的优点。该方法的源代码可在 https://github.com/linfengyu77/IRLDCT 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c7e/11178168/22faaea80ccd/pone.0304738.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验