Fathi Kazerooni Anahita, Akbari Hamed, Hu Xiaoju, Bommineni Vikas, Grigoriadis Dimitris, Toorens Erik, Sako Chiharu, Mamourian Elizabeth, Ballinger Dominique, Sussman Robyn, Singh Ashish, Verginadis Ioannis I, Dahmane Nadia, Koumenis Constantinos, Binder Zev A, Bagley Stephen J, Mohan Suyash, Hatzigeorgiou Artemis, O'Rourke Donald M, Ganguly Tapan, De Subhajyoti, Bakas Spyridon, Nasrallah MacLean P, Davatzikos Christos
AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA.
Center for Data-Driven Discovery in Biomedicine (D3b), Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Commun Med (Lond). 2025 Mar 1;5(1):55. doi: 10.1038/s43856-025-00767-0.
Glioblastoma is a highly heterogeneous brain tumor, posing challenges for precision therapies and patient stratification in clinical trials. Understanding how genetic mutations influence tumor imaging may improve patient management and treatment outcomes. This study investigates the relationship between imaging features, spatial patterns of tumor location, and genetic alterations in IDH-wildtype glioblastoma, as well as the likely sequence of mutational events.
We conducted a retrospective analysis of 357 IDH-wildtype glioblastomas with pre-operative multiparametric MRI and targeted genetic sequencing data. Radiogenomic signatures and spatial distribution maps were generated for key mutations in genes such as EGFR, PTEN, TP53, and NF1 and their corresponding pathways. Machine and deep learning models were used to identify imaging biomarkers and stratify tumors based on their genetic profiles and molecular heterogeneity.
Here, we show that glioblastoma mutations produce distinctive imaging signatures, which are more pronounced in tumors with less molecular heterogeneity. These signatures provide insights into how mutations affect tumor characteristics such as neovascularization, cell density, invasion, and vascular leakage. We also found that tumor location and spatial distribution correlate with genetic profiles, revealing associations between tumor regions and specific oncogenic drivers. Additionally, imaging features reflect the cross-sectionally inferred evolutionary trajectories of glioblastomas.
This study establishes clinically accessible imaging biomarkers that capture the molecular composition and oncogenic drivers of glioblastoma. These findings have potential implications for noninvasive tumor profiling, personalized therapies, and improved patient stratification in clinical trials.
胶质母细胞瘤是一种高度异质性的脑肿瘤,给临床试验中的精准治疗和患者分层带来了挑战。了解基因突变如何影响肿瘤成像可能会改善患者管理和治疗结果。本研究调查了异柠檬酸脱氢酶(IDH)野生型胶质母细胞瘤的成像特征、肿瘤位置的空间模式与基因改变之间的关系,以及突变事件的可能顺序。
我们对357例具有术前多参数磁共振成像(MRI)和靶向基因测序数据的IDH野生型胶质母细胞瘤进行了回顾性分析。针对表皮生长因子受体(EGFR)、磷酸酶和张力蛋白同源物(PTEN)、肿瘤蛋白p53(TP53)和神经纤维瘤病1型(NF1)等基因及其相应通路的关键突变,生成了放射基因组特征和空间分布图。使用机器学习和深度学习模型来识别成像生物标志物,并根据肿瘤的基因特征和分子异质性对肿瘤进行分层。
在此,我们表明胶质母细胞瘤突变产生独特的成像特征,在分子异质性较低的肿瘤中更为明显。这些特征为突变如何影响肿瘤特征(如新生血管形成、细胞密度、侵袭和血管渗漏)提供了见解。我们还发现肿瘤位置和空间分布与基因特征相关,揭示了肿瘤区域与特定致癌驱动因素之间的关联。此外,成像特征反映了胶质母细胞瘤横断面推断的进化轨迹。
本研究建立了可临床应用的成像生物标志物,这些标志物能够捕捉胶质母细胞瘤的分子组成和致癌驱动因素。这些发现对无创肿瘤分析、个性化治疗以及改善临床试验中的患者分层具有潜在意义。