Suppr超能文献

基于多组学的广泛期小细胞肺癌患者接受化疗免疫治疗的预后和治疗反应的深度学习预测:一项回顾性队列研究

Multiomics-Based Deep Learning Prediction of Prognosis and Therapeutic Response in Patients With Extensive-Stage Small Cell Lung Cancer Receiving Chemoimmunotherapy: A Retrospective Cohort Study.

作者信息

Nie Fang, Pei Xiufeng, Du Jiale, Shi Wanting, Wang Jianying, Feng Lu, Liu Yonggang

机构信息

Department of Thoracic Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, 014000, People's Republic of China.

出版信息

Int J Gen Med. 2025 Feb 24;18:981-996. doi: 10.2147/IJGM.S506485. eCollection 2025.

Abstract

OBJECTIVE

This study aimed to develop a clinical early warning prediction model to evaluate the prognosis and response to chemoimmunotherapy in patients with extensive-stage small cell lung cancer (ES-SCLC), thereby guiding clinical decision-making.

METHODS

A retrospective analysis was conducted on the clinical data and radiomics parameters of 309 patients with ES-SCLC hospitalized at Baotou Cancer Hospital from February 2020 to September 2024. Patients were divided into reactive and non-reactive groups based on their response to chemoimmunotherapy.Machine learning algorithms (including random forests, decision trees, artificial neural networks, and generalized linear regression) were used to predict the combined treatment response. The model's predictive ability was evaluated using the receiver operating characteristic (ROC) curve and clinical decision curve analysis(DCA). The prognostic evaluation of patients receiving combination therapy was based on the COX regression model, with predictive performance assessed through nomogram visualization and calibration curves.

RESULTS

Out of 309 patients with ES-SCLC, 248 (80.26%) responded to combination therapy. Logistic regression and Least absolute shrinkage and selection operator (LASSO) regression analyses identified Energy, sum of squares(SOS), mean sum(MES), sum variance(SUV), sum entropy(SUE), difference variance(DIV), and pathomics score as independent risk factors for treatment response. The area under the ROC curve for predicting treatment response using machine learning were 0.764 (95% confidence interval [CI]: 0.7070.821) and 0.901 (95% CI: 0.8460.956) in the training and validation sets. The C-index of the radiomics and pathomics prognostic nomogram model based on the COX prognostic model was 0.766 and 0.812 in those sets, respectively.

CONCLUSION

We developed prediction model based on multi-omics demonstrated satisfactory performance in predicting chemoimmunotherapy response in patients with ES-SCLC. The random forest prediction model, in particular, provides accurate response and prognostic risk assessments, thereby assisting clinical decision-making.

摘要

目的

本研究旨在建立一种临床早期预警预测模型,以评估广泛期小细胞肺癌(ES-SCLC)患者的预后及对化疗免疫治疗的反应,从而指导临床决策。

方法

对2020年2月至2024年9月在包头市肿瘤医院住院的309例ES-SCLC患者的临床资料和影像组学参数进行回顾性分析。根据患者对化疗免疫治疗的反应将其分为反应组和无反应组。使用机器学习算法(包括随机森林、决策树、人工神经网络和广义线性回归)预测联合治疗反应。采用受试者工作特征(ROC)曲线和临床决策曲线分析(DCA)评估模型的预测能力。接受联合治疗患者的预后评估基于COX回归模型,通过列线图可视化和校准曲线评估预测性能。

结果

309例ES-SCLC患者中,248例(80.26%)对联合治疗有反应。逻辑回归和最小绝对收缩和选择算子(LASSO)回归分析确定能量、平方和(SOS)、平均和(MES)、和方差(SUV)、和熵(SUE)、差异方差(DIV)和病理组学评分是治疗反应的独立危险因素。在训练集和验证集中,使用机器学习预测治疗反应的ROC曲线下面积分别为0.764(95%置信区间[CI]:0.7070.821)和0.901(95%CI:0.8460.956)。基于COX预后模型的影像组学和病理组学预后列线图模型在这些数据集中的C指数分别为0.766和0.812。

结论

我们基于多组学建立的预测模型在预测ES-SCLC患者化疗免疫治疗反应方面表现出令人满意的性能。特别是随机森林预测模型,提供了准确的反应和预后风险评估,从而有助于临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4728/11869764/17947a51b025/IJGM-18-981-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验