Suppr超能文献

评估变分量子本征求解器方法在分子系统简化模型中的应用:以原儿茶酸为例的案例研究。

Evaluating Variational Quantum Eigensolver Approaches for Simplified Models of Molecular Systems: A Case Study on Protocatechuic Acid.

作者信息

de Jesus Gleydson Fernandes, Teixeira Erico Souza, Galvão Lucas Queiroz, da Silva Maria Heloísa Fraga, Neto Mauro Queiroz Nooblath, Fernandez Bruno Oziel, de Lima Amanda Marques, de Aguiar Silva Eivson Darlivam Rodrigues, Cruz Clebson Dos Santos

机构信息

QuIIN-Quantum Industrial Innovation, EMBRAPII CIMATEC Competence Center in Quantum Technologies, SENAI CIMATEC, Av. Orlando Gomes, 1845, Salvador 41850-010, BA, Brazil.

Latin America Quantum Computing Center, SENAI CIMATEC, Av. Orlando Gomes, 1845, Salvador 41850-010, BA, Brazil.

出版信息

Molecules. 2024 Dec 31;30(1):119. doi: 10.3390/molecules30010119.

Abstract

The Variational Quantum Eigensolver (VQE) is a hybrid algorithm that combines quantum and classical computing to determine the ground-state energy of molecular systems. In this context, this study applies VQE to investigate the ground state of protocatechuic acid, analyzing its performance with various Ansatzes and active spaces. Subsequently, all VQE results were compared to those obtained with the CISD and FCI methods. The results demonstrate that Ansatzes, like Unitary Coupled Cluster Singles and Doubles (UCCSD) and variations of Hardware-Efficient Ansatzes, generally achieve accuracy close to that of FCI. In conclusion, this study highlights the effectiveness of VQE as a robust method for investigating molecular ground-state energies. Additionally, the findings emphasize the pivotal role of Ansatz design and active space selection in optimizing VQE performance, offering meaningful insights into its capabilities and constraints.

摘要

变分量子本征求解器(VQE)是一种混合算法,它结合了量子计算和经典计算来确定分子系统的基态能量。在此背景下,本研究应用VQE来研究原儿茶酸的基态,分析其在各种量子近似(Ansatz)和活性空间下的性能。随后,将所有VQE结果与用耦合簇单双激发(CISD)和全组态相互作用(FCI)方法获得的结果进行比较。结果表明,诸如幺正耦合簇单双激发(UCCSD)等量子近似以及硬件高效量子近似的变体,通常能达到接近FCI的精度。总之,本研究突出了VQE作为一种研究分子基态能量的稳健方法的有效性。此外,研究结果强调了量子近似设计和活性空间选择在优化VQE性能方面的关键作用,为其能力和局限性提供了有意义的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc8/11721907/f04c7e0f8f9c/molecules-30-00119-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验