文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于时空神经影像分析的动态图表示学习

Dynamic Graph Representation Learning for Spatio-Temporal Neuroimaging Analysis.

作者信息

Liu Rui, Hu Yao, Wu Jibin, Wong Ka-Chun, Huang Zhi-An, Huang Yu-An, Chen Tan Kay

出版信息

IEEE Trans Cybern. 2025 Mar;55(3):1121-1134. doi: 10.1109/TCYB.2025.3531657. Epub 2025 Mar 6.


DOI:10.1109/TCYB.2025.3531657
PMID:40031724
Abstract

Neuroimaging analysis aims to reveal the information-processing mechanisms of the human brain in a noninvasive manner. In the past, graph neural networks (GNNs) have shown promise in capturing the non-Euclidean structure of brain networks. However, existing neuroimaging studies focused primarily on spatial functional connectivity, despite temporal dynamics in complex brain networks. To address this gap, we propose a spatio-temporal interactive graph representation framework (STIGR) for dynamic neuroimaging analysis that encompasses different aspects from classification and regression tasks to interpretation tasks. STIGR leverages a dynamic adaptive-neighbor graph convolution network to capture the interrelationships between spatial and temporal dynamics. To address the limited global scope in graph convolutions, a self-attention module based on Transformers is introduced to extract long-term dependencies. Contrastive learning is used to adaptively contrast similarities between adjacent scanning windows, modeling cross-temporal correlations in dynamic graphs. Extensive experiments on six public neuroimaging datasets demonstrate the competitive performance of STIGR across different platforms, achieving state-of-the-art results in classification and regression tasks. The proposed framework enables the detection of remarkable temporal association patterns between regions of interest based on sequential neuroimaging signals, offering medical professionals a versatile and interpretable tool for exploring task-specific neurological patterns. Our codes and models are available at https://github.com/77YQ77/STIGR/.

摘要

神经影像学分析旨在以非侵入性方式揭示人类大脑的信息处理机制。过去,图神经网络(GNN)在捕捉脑网络的非欧几里得结构方面显示出前景。然而,尽管复杂脑网络中存在时间动态性,但现有的神经影像学研究主要集中在空间功能连接性上。为了弥补这一差距,我们提出了一种用于动态神经影像学分析的时空交互图表示框架(STIGR),该框架涵盖了从分类和回归任务到解释任务的不同方面。STIGR利用动态自适应邻域图卷积网络来捕捉空间和时间动态之间的相互关系。为了解决图卷积中有限的全局范围问题,引入了基于Transformer的自注意力模块来提取长期依赖性。对比学习用于自适应地对比相邻扫描窗口之间的相似性,对动态图中的跨时间相关性进行建模。在六个公共神经影像学数据集上进行的大量实验证明了STIGR在不同平台上的竞争性能,在分类和回归任务中取得了领先的结果。所提出的框架能够基于连续的神经影像学信号检测感兴趣区域之间显著的时间关联模式,为医学专业人员提供了一个用于探索特定任务神经模式的通用且可解释的工具。我们的代码和模型可在https://github.com/77YQ77/STIGR/获取。

相似文献

[1]
Dynamic Graph Representation Learning for Spatio-Temporal Neuroimaging Analysis.

IEEE Trans Cybern. 2025-3

[2]
DyGraphformer: Transformer combining dynamic spatio-temporal graph network for multivariate time series forecasting.

Neural Netw. 2025-1

[3]
GTC: GNN-Transformer co-contrastive learning for self-supervised heterogeneous graph representation.

Neural Netw. 2025-1

[4]
Multi-channel spatio-temporal graph attention contrastive network for brain disease diagnosis.

Neuroimage. 2025-2-15

[5]
Graph Neural Networks in Network Neuroscience.

IEEE Trans Pattern Anal Mach Intell. 2023-5

[6]
Spatio-Temporal Graph Hubness Propagation Model for Dynamic Brain Network Classification.

IEEE Trans Med Imaging. 2024-6

[7]
DSAM: A deep learning framework for analyzing temporal and spatial dynamics in brain networks.

Med Image Anal. 2025-4

[8]
Modeling spatio-temporal patterns of holistic functional brain networks via multi-head guided attention graph neural networks (Multi-Head GAGNNs).

Med Image Anal. 2022-8

[9]
MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis.

Comput Biol Med. 2022-3

[10]
Modeling the dynamic brain network representation for autism spectrum disorder diagnosis.

Med Biol Eng Comput. 2022-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索