Liu Rui, Hu Yao, Wu Jibin, Wong Ka-Chun, Huang Zhi-An, Huang Yu-An, Chen Tan Kay
IEEE Trans Cybern. 2025 Mar;55(3):1121-1134. doi: 10.1109/TCYB.2025.3531657. Epub 2025 Mar 6.
Neuroimaging analysis aims to reveal the information-processing mechanisms of the human brain in a noninvasive manner. In the past, graph neural networks (GNNs) have shown promise in capturing the non-Euclidean structure of brain networks. However, existing neuroimaging studies focused primarily on spatial functional connectivity, despite temporal dynamics in complex brain networks. To address this gap, we propose a spatio-temporal interactive graph representation framework (STIGR) for dynamic neuroimaging analysis that encompasses different aspects from classification and regression tasks to interpretation tasks. STIGR leverages a dynamic adaptive-neighbor graph convolution network to capture the interrelationships between spatial and temporal dynamics. To address the limited global scope in graph convolutions, a self-attention module based on Transformers is introduced to extract long-term dependencies. Contrastive learning is used to adaptively contrast similarities between adjacent scanning windows, modeling cross-temporal correlations in dynamic graphs. Extensive experiments on six public neuroimaging datasets demonstrate the competitive performance of STIGR across different platforms, achieving state-of-the-art results in classification and regression tasks. The proposed framework enables the detection of remarkable temporal association patterns between regions of interest based on sequential neuroimaging signals, offering medical professionals a versatile and interpretable tool for exploring task-specific neurological patterns. Our codes and models are available at https://github.com/77YQ77/STIGR/.
神经影像学分析旨在以非侵入性方式揭示人类大脑的信息处理机制。过去,图神经网络(GNN)在捕捉脑网络的非欧几里得结构方面显示出前景。然而,尽管复杂脑网络中存在时间动态性,但现有的神经影像学研究主要集中在空间功能连接性上。为了弥补这一差距,我们提出了一种用于动态神经影像学分析的时空交互图表示框架(STIGR),该框架涵盖了从分类和回归任务到解释任务的不同方面。STIGR利用动态自适应邻域图卷积网络来捕捉空间和时间动态之间的相互关系。为了解决图卷积中有限的全局范围问题,引入了基于Transformer的自注意力模块来提取长期依赖性。对比学习用于自适应地对比相邻扫描窗口之间的相似性,对动态图中的跨时间相关性进行建模。在六个公共神经影像学数据集上进行的大量实验证明了STIGR在不同平台上的竞争性能,在分类和回归任务中取得了领先的结果。所提出的框架能够基于连续的神经影像学信号检测感兴趣区域之间显著的时间关联模式,为医学专业人员提供了一个用于探索特定任务神经模式的通用且可解释的工具。我们的代码和模型可在https://github.com/77YQ77/STIGR/获取。
IEEE Trans Cybern. 2025-3
IEEE Trans Pattern Anal Mach Intell. 2023-5
IEEE Trans Med Imaging. 2024-6
Med Biol Eng Comput. 2022-7