文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Microbial network inference for longitudinal microbiome studies with LUPINE.

作者信息

Kodikara Saritha, Lê Cao Kim-Anh

机构信息

Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Royal Parade, 3052, Parkville, Victoria, Australia.

出版信息

Microbiome. 2025 Mar 3;13(1):64. doi: 10.1186/s40168-025-02041-w.


DOI:10.1186/s40168-025-02041-w
PMID:40033386
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11874778/
Abstract

BACKGROUND: The microbiome is a complex ecosystem of interdependent taxa that has traditionally been studied through cross-sectional studies. However, longitudinal microbiome studies are becoming increasingly popular. These studies enable researchers to infer taxa associations towards the understanding of coexistence, competition, and collaboration between microbes across time. Traditional metrics for association analysis, such as correlation, are limited due to the data characteristics of microbiome data (sparse, compositional, multivariate). Several network inference methods have been proposed, but have been largely unexplored in a longitudinal setting. RESULTS: We introduce LUPINE (LongitUdinal modelling with Partial least squares regression for NEtwork inference), a novel approach that leverages on conditional independence and low-dimensional data representation. This method is specifically designed to handle scenarios with small sample sizes and small number of time points. LUPINE is the first method of its kind to infer microbial networks across time, while considering information from all past time points and is thus able to capture dynamic microbial interactions that evolve over time. We validate LUPINE and its variant, LUPINE_single (for single time point analysis) in simulated data and four case studies, where we highlight LUPINE's ability to identify relevant taxa in each study context, across different experimental designs (mouse and human studies, with or without interventions, and short or long time courses). To detect changes in the networks across time and groups or in response to external disturbances, we used different metrics to compare the inferred networks. CONCLUSIONS: LUPINE is a simple yet innovative network inference methodology that is suitable for, but not limited to, analysing longitudinal microbiome data. The R code and data are publicly available for readers interested in applying these new methods to their studies. Video Abstract.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/b6dd2f9bca0f/40168_2025_2041_Fig24_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/2911770aba4d/40168_2025_2041_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/aaa22b5cca29/40168_2025_2041_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/069fc92a2ae6/40168_2025_2041_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/a0fabefa53fa/40168_2025_2041_Figb_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/1f77da7f2529/40168_2025_2041_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/150c7d4f8507/40168_2025_2041_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/e250411e6578/40168_2025_2041_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/c5ffe93f29b5/40168_2025_2041_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/f87896e4b9dc/40168_2025_2041_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/bdc1d76ca455/40168_2025_2041_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/b5b430625d41/40168_2025_2041_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/d6f618930770/40168_2025_2041_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/f6acba6379b9/40168_2025_2041_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/65bd1c2e3442/40168_2025_2041_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/909f9cc6b3c9/40168_2025_2041_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/53b1b1d495c1/40168_2025_2041_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/72fbc74804f9/40168_2025_2041_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/e807d0a03230/40168_2025_2041_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/d87c5f587981/40168_2025_2041_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/d3afe43c2ac5/40168_2025_2041_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/a79f64abed03/40168_2025_2041_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/ac89fb6e9ee4/40168_2025_2041_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/93cee3ed09fa/40168_2025_2041_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/4f9aec4f625f/40168_2025_2041_Fig22_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/5811eefcc9ec/40168_2025_2041_Fig23_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/b6dd2f9bca0f/40168_2025_2041_Fig24_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/2911770aba4d/40168_2025_2041_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/aaa22b5cca29/40168_2025_2041_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/069fc92a2ae6/40168_2025_2041_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/a0fabefa53fa/40168_2025_2041_Figb_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/1f77da7f2529/40168_2025_2041_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/150c7d4f8507/40168_2025_2041_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/e250411e6578/40168_2025_2041_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/c5ffe93f29b5/40168_2025_2041_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/f87896e4b9dc/40168_2025_2041_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/bdc1d76ca455/40168_2025_2041_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/b5b430625d41/40168_2025_2041_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/d6f618930770/40168_2025_2041_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/f6acba6379b9/40168_2025_2041_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/65bd1c2e3442/40168_2025_2041_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/909f9cc6b3c9/40168_2025_2041_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/53b1b1d495c1/40168_2025_2041_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/72fbc74804f9/40168_2025_2041_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/e807d0a03230/40168_2025_2041_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/d87c5f587981/40168_2025_2041_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/d3afe43c2ac5/40168_2025_2041_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/a79f64abed03/40168_2025_2041_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/ac89fb6e9ee4/40168_2025_2041_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/93cee3ed09fa/40168_2025_2041_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/4f9aec4f625f/40168_2025_2041_Fig22_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/5811eefcc9ec/40168_2025_2041_Fig23_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1295/11874778/b6dd2f9bca0f/40168_2025_2041_Fig24_HTML.jpg

相似文献

[1]
Microbial network inference for longitudinal microbiome studies with LUPINE.

Microbiome. 2025-3-3

[2]
Cross-validation for training and testing co-occurrence network inference algorithms.

BMC Bioinformatics. 2025-3-6

[3]
Statistical Methods for Microbiome Compositional Data Network Inference: A Survey.

J Comput Biol. 2022-7

[4]
Dynamic interaction network inference from longitudinal microbiome data.

Microbiome. 2019-4-2

[5]
coda4microbiome: compositional data analysis for microbiome cross-sectional and longitudinal studies.

BMC Bioinformatics. 2023-3-6

[6]
Compositional zero-inflated network estimation for microbiome data.

BMC Bioinformatics. 2020-12-28

[7]
gCoda: Conditional Dependence Network Inference for Compositional Data.

J Comput Biol. 2017-7

[8]
An integrated strain-level analytic pipeline utilizing longitudinal metagenomic data.

Microbiol Spectr. 2024-11-5

[9]
Unfolding and de-confounding: biologically meaningful causal inference from longitudinal multi-omic networks using METALICA.

mSystems. 2024-10-22

[10]
Mapping the ecological networks of microbial communities.

Nat Commun. 2017-12-11

引用本文的文献

[1]
Quantifying aerosol and microbial exposure of healthcare workers in endoscopy suites: a time-based study.

Front Public Health. 2025-8-29

[2]
Integrative systems biology approaches for analyzing microbiome dysbiosis and species interactions.

Brief Bioinform. 2025-7-2

本文引用的文献

[1]
mbtransfer: Microbiome intervention analysis using transfer functions and mirror statistics.

PLoS Comput Biol. 2024-6

[2]
Gut Microbiota in Patients with Prediabetes.

Nutrients. 2024-4-9

[3]
Methodological Considerations in Longitudinal Analyses of Microbiome Data: A Comprehensive Review.

Genes (Basel). 2023-12-28

[4]
Host genetics and gut microbiota jointly regulate blood biochemical indicators in chickens.

Appl Microbiol Biotechnol. 2023-12

[5]
Effect of Consumption of Animal Products on the Gut Microbiome Composition and Gut Health.

Food Sci Anim Resour. 2023-9

[6]
Impact of dietary interventions on pre-diabetic oral and gut microbiome, metabolites and cytokines.

Nat Commun. 2023-9-4

[7]
Gut microbial carbohydrate metabolism contributes to insulin resistance.

Nature. 2023-9

[8]
Exploring the gut microbiota in patients with pre-diabetes and treatment naïve diabetes type 2 - a pilot study.

BMC Endocr Disord. 2023-8-21

[9]
The Gut Microbiome Responds Progressively to Fat and/or Sugar-Rich Diets and Is Differentially Modified by Dietary Fat and Sugar.

Nutrients. 2023-4-27

[10]
Strains of and its extracts reduce blood glucose levels, percent HbA1c, and improve glucose tolerance without causing hypoglycemic side effects in diabetic and prediabetic mice.

BMJ Open Diabetes Res Care. 2023-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索