文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肠道微生物的碳水化合物代谢有助于胰岛素抵抗。

Gut microbial carbohydrate metabolism contributes to insulin resistance.

机构信息

Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.

Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.

出版信息

Nature. 2023 Sep;621(7978):389-395. doi: 10.1038/s41586-023-06466-x. Epub 2023 Aug 30.


DOI:10.1038/s41586-023-06466-x
PMID:37648852
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10499599/
Abstract

Insulin resistance is the primary pathophysiology underlying metabolic syndrome and type 2 diabetes. Previous metagenomic studies have described the characteristics of gut microbiota and their roles in metabolizing major nutrients in insulin resistance. In particular, carbohydrate metabolism of commensals has been proposed to contribute up to 10% of the host's overall energy extraction, thereby playing a role in the pathogenesis of obesity and prediabetes. Nevertheless, the underlying mechanism remains unclear. Here we investigate this relationship using a comprehensive multi-omics strategy in humans. We combine unbiased faecal metabolomics with metagenomics, host metabolomics and transcriptomics data to profile the involvement of the microbiome in insulin resistance. These data reveal that faecal carbohydrates, particularly host-accessible monosaccharides, are increased in individuals with insulin resistance and are associated with microbial carbohydrate metabolisms and host inflammatory cytokines. We identify gut bacteria associated with insulin resistance and insulin sensitivity that show a distinct pattern of carbohydrate metabolism, and demonstrate that insulin-sensitivity-associated bacteria ameliorate host phenotypes of insulin resistance in a mouse model. Our study, which provides a comprehensive view of the host-microorganism relationships in insulin resistance, reveals the impact of carbohydrate metabolism by microbiota, suggesting a potential therapeutic target for ameliorating insulin resistance.

摘要

胰岛素抵抗是代谢综合征和 2 型糖尿病的主要病理生理学基础。先前的宏基因组研究已经描述了肠道微生物组的特征及其在代谢胰岛素抵抗主要营养素中的作用。特别是,共生菌的碳水化合物代谢被认为可以贡献宿主总能量提取的 10%,从而在肥胖和糖尿病前期的发病机制中发挥作用。然而,其潜在机制尚不清楚。在这里,我们使用人类的综合多组学策略来研究这种关系。我们将无偏粪便代谢组学与宏基因组、宿主代谢组学和转录组学数据相结合,分析微生物组在胰岛素抵抗中的作用。这些数据表明,粪便中的碳水化合物,特别是宿主可利用的单糖,在胰岛素抵抗个体中增加,并与微生物碳水化合物代谢和宿主炎症细胞因子有关。我们鉴定了与胰岛素抵抗和胰岛素敏感性相关的肠道细菌,这些细菌表现出不同的碳水化合物代谢模式,并证明与胰岛素敏感性相关的细菌在小鼠模型中改善了宿主的胰岛素抵抗表型。我们的研究提供了胰岛素抵抗中宿主-微生物关系的全面视图,揭示了微生物群对碳水化合物代谢的影响,为改善胰岛素抵抗提供了一个潜在的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/92e0a2264c33/41586_2023_6466_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/9388929a1831/41586_2023_6466_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/261283dc4e8b/41586_2023_6466_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/6f023f624517/41586_2023_6466_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/07d0d8195198/41586_2023_6466_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/96e1d348aa57/41586_2023_6466_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/a609ccfbf509/41586_2023_6466_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/839f3e765483/41586_2023_6466_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/b73bd1ef8a18/41586_2023_6466_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/d0b4039c7dd9/41586_2023_6466_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/07e294112e74/41586_2023_6466_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/97908f82db86/41586_2023_6466_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/f28865593f2b/41586_2023_6466_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/a26ae592058d/41586_2023_6466_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/92e0a2264c33/41586_2023_6466_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/9388929a1831/41586_2023_6466_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/261283dc4e8b/41586_2023_6466_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/6f023f624517/41586_2023_6466_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/07d0d8195198/41586_2023_6466_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/96e1d348aa57/41586_2023_6466_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/a609ccfbf509/41586_2023_6466_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/839f3e765483/41586_2023_6466_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/b73bd1ef8a18/41586_2023_6466_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/d0b4039c7dd9/41586_2023_6466_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/07e294112e74/41586_2023_6466_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/97908f82db86/41586_2023_6466_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/f28865593f2b/41586_2023_6466_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/a26ae592058d/41586_2023_6466_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbb/10499599/92e0a2264c33/41586_2023_6466_Fig14_ESM.jpg

相似文献

[1]
Gut microbial carbohydrate metabolism contributes to insulin resistance.

Nature. 2023-9

[2]
Metagenomics and Faecal Metabolomics Integrative Analysis towards the Impaired Glucose Regulation and Type 2 Diabetes in Uyghur-Related Omics.

J Diabetes Res. 2019-11-18

[3]
Ethanol extract of propolis regulates type 2 diabetes in mice via metabolism and gut microbiota.

J Ethnopharmacol. 2023-6-28

[4]
Faecal microbial metabolites of proteolytic and saccharolytic fermentation in relation to degree of insulin resistance in adult individuals.

Benef Microbes. 2021-6-15

[5]
Gut Microbiota and Their Associated Metabolites in Diabetes: A Cross Talk Between Host and Microbes-A Review.

Metab Syndr Relat Disord. 2023-2

[6]
Microbial stars: shedding light on gut microbes' role in insulin resistance and innovative diabetes therapies.

Gut Microbes. 2024

[7]
Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time.

Gut. 2019-5-30

[8]
An Integrated Fecal Microbiome and Metabolomics in T2DM Rats Reveal Antidiabetes Effects from Host-Microbial Metabolic Axis of EtOAc Extract from .

Oxid Med Cell Longev. 2020

[9]
Screening potential biomarkers associated with insulin resistance in high-fat diet-fed mice by integrating metagenomics and untargeted metabolomics.

Microbiol Spectr. 2024-4-2

[10]
Fecal Metaproteomics Reveals Reduced Gut Inflammation and Changed Microbial Metabolism Following Lifestyle-Induced Weight Loss.

Biomolecules. 2021-5-12

引用本文的文献

[1]
Genetic variance in the murine defensin locus modulates glucose homeostasis.

EMBO J. 2025-9-9

[2]
Gut microbiota dysbiosis and systemic immune dysfunction in critical ill patients with multidrug-resistant bacterial colonization and infection.

J Transl Med. 2025-9-2

[3]
Multi-omics investigation of spontaneous T2DM macaque emphasizes gut microbiota could up-regulate the absorption of excess palmitic acid in the T2DM progression.

Elife. 2025-8-29

[4]
Comparison of extracellular vesicles carrying bacterial DNA in urine and serum from a Korean population.

Front Microbiol. 2025-8-12

[5]
Exploring the impact of artificial sweeteners on diabetes management and glycemic control.

Front Nutr. 2025-8-12

[6]
Interplays of Genotype, Alcohol Consumption, and Gut Microbiota in Relation to Insulin Resistance.

Nutrients. 2025-8-18

[7]
Microbial Signatures of Obesity-Aggravated Psoriasis: Insights from an Imiquimod-Based Mouse Model.

Int J Mol Sci. 2025-8-8

[8]
Indole Propionic Acid Regulates Gut Immunity: Mechanisms of Metabolite-Driven Immunomodulation and Barrier Integrity.

J Microbiol Biotechnol. 2025-8-18

[9]
From bench to bed: deep insights the tacrolimus-induced diabetes and gut microbiota dysbiosis.

Eur J Med Res. 2025-8-11

[10]
The role of gut microbiota in insulin resistance: recent progress.

Front Microbiol. 2025-7-25

本文引用的文献

[1]
Characterization of gut microbial structural variations as determinants of human bile acid metabolism.

Cell Host Microbe. 2021-12-8

[2]
Acetate differentially regulates IgA reactivity to commensal bacteria.

Nature. 2021-7

[3]
Obesity-Related Gut Microbiota Aggravates Alveolar Bone Destruction in Experimental Periodontitis through Elevation of Uric Acid.

mBio. 2021-6-29

[4]
Elucidation of Gut Microbiota-Associated Lipids Using LC-MS/MS and 16S rRNA Sequence Analyses.

iScience. 2020-11-23

[5]
Interpretable Machine Learning Framework Reveals Robust Gut Microbiome Features Associated With Type 2 Diabetes.

Diabetes Care. 2021-2

[6]
The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study.

Cell Metab. 2020-9-1

[7]
A lipidome atlas in MS-DIAL 4.

Nat Biotechnol. 2020-6-15

[8]
The Controversial Role of Human Gut Lachnospiraceae.

Microorganisms. 2020-4-15

[9]
Obese Individuals with and without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition.

Cell Host Microbe. 2019-8-6

[10]
Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases.

Nature. 2019-5-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索