Suppr超能文献

采用幅度导航的扩散准备成像用于校正运动引起的信号丢失。

Diffusion-prepared imaging with amplitude navigation for correction of motion-induced signal loss.

作者信息

Lee Philip K, Zhou Xuetong, Hargreaves Brian A

机构信息

Radiology, Stanford University, Stanford, California, USA.

Bioengineering, Stanford University, Stanford, California, USA.

出版信息

Magn Reson Med. 2025 Jun;93(6):2456-2472. doi: 10.1002/mrm.30484. Epub 2025 Mar 4.

Abstract

PURPOSE

Diffusion-prepared imaging is a flexible alternative to conventional spin-echo diffusion-weighted EPI that allows selection of different imaging readouts and k-space traversals, and permits control of image contrast or image artifacts. We investigate a new signal model and reconstruction for diffusion-prepared imaging that addresses signal variations caused by motion-sensitizing diffusion gradients.

METHODS

A signal model, sampling theory, and reconstruction framework were developed assuming that motion-induced phases and the measured signals are random variables. The reconstruction incorporates real-valued amplitude weights estimated from low-resolution images into a linear system. A diffusion-prepared sequence was applied in phantom and in vivo acquisitions using different methods for managing phase errors from eddy currents or motion. This acquisition was performed with a high number of NEX and retrospectively undersampled to analyze errors in ADC estimation, and compared to spin-echo diffusion-weighted EPI, as well as conventional diffusion-prepared methods. The B sensitivity of the sequence was investigated using simulation and phantom experiments.

RESULTS

Images reconstructed using the proposed method had similar image structures when compared to conventional spin-echo diffusion-weighted EPI, and demonstrated improved SNR efficiency compared to previous diffusion-prepared approaches. ADC errors followed a trend consistent with the derived signal model, sampling theory, and expected B sensitivity. The sampling requirement was shown to depend on the magnitude of motion-induced phases, as well as phases from residual eddy currents.

CONCLUSION

Employing amplitude weights in the reconstruction of a diffusion-prepared sequence can improve SNR efficiency at the cost of a greater minimum sampling time and increased sensitivity to B inhomogeneity.

摘要

目的

扩散准备成像(Diffusion-prepared imaging)是传统自旋回波扩散加权EPI的一种灵活替代方法,它允许选择不同的成像读出方式和k空间遍历方式,并能控制图像对比度或图像伪影。我们研究了一种用于扩散准备成像的新信号模型和重建方法,该方法可解决由运动敏感扩散梯度引起的信号变化问题。

方法

在假设运动诱导相位和测量信号为随机变量的情况下,开发了一种信号模型、采样理论和重建框架。该重建方法将从低分辨率图像估计的实值幅度权重纳入线性系统。使用不同方法处理涡流或运动引起的相位误差,在体模和体内采集过程中应用扩散准备序列。采集时采用大量的NEX并进行回顾性欠采样,以分析ADC估计中的误差,并与自旋回波扩散加权EPI以及传统的扩散准备方法进行比较。使用模拟和体模实验研究了该序列的B敏感性。

结果

与传统自旋回波扩散加权EPI相比,使用所提出方法重建的图像具有相似的图像结构,并且与先前的扩散准备方法相比,其SNR效率有所提高。ADC误差遵循与推导的信号模型、采样理论以及预期的B敏感性一致的趋势。结果表明,采样要求取决于运动诱导相位的大小以及残余涡流的相位。

结论

在扩散准备序列的重建中采用幅度权重可以提高SNR效率,但代价是最小采样时间增加以及对B不均匀性的敏感性提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验