Suppr超能文献

用于可充电锂氯电池中高效LiCl/Cl转化的钴单原子催化

Co Single-Atom Catalysis for High-Efficiency LiCl/Cl Conversion in Rechargeable Lithium-Chlorine Batteries.

作者信息

Li Peicai, Ma Chenyu, Wang Yufeng, Zhai Shibo, Ma Guanzhong, Kong Debing, Li Zhongtao

机构信息

State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.

College of New Energy, China University of Petroleum (East China), Qingdao, 266580, P. R. China.

出版信息

Adv Mater. 2025 Apr;37(15):e2418990. doi: 10.1002/adma.202418990. Epub 2025 Mar 4.

Abstract

Lithium-chlorine (Li-Cl) secondary batteries are emerging as promising candidates for high-energy-density power sources and an extensive operational temperature range. However, conventional electrode materials suffer from weak adsorption for chlorine gas (Cl) and low conversion efficiency of lithium chloride (LiCl), leading to significant loss of chlorine-based active materials. This issue hampers the cyclability of Li-Cl batteries. In this work, it is demonstrated that synergistic Cl adsorption on the electrode surface and the energy barrier for LiCl reactions are crucial for enhancing Cl/LiCl conversion efficiency. Consequently, a cobalt (Co) single-atom site catalyst with a Co-N coordination environment has been developed, which significantly diminishes the transformation barrier of solid LiCl particles into Cl and concurrently enhances the chemical adsorption of Cl, facilitating uniform nucleation of LiCl. As a result, the Li-Cl@Co-NC battery developed has achieved a 0.6 V reduction in polarization voltage under high current densities, effectively addressing the issue of low conversion efficiency between Cl and LiCl. At room temperature, the Li-Cl@Co-NC battery achieves over 600 cycles at 1500 mA g; At -40 °C, it reaches 650 cycles at 500 mA g. The research overcomes the cycle stability barrier in high-current Li-Cl batteries and offers a strategy for batteries with a wide temperature range and long cycle life.

摘要

锂氯(Li-Cl)二次电池正成为高能量密度电源和宽工作温度范围的有前途的候选者。然而,传统电极材料对氯气(Cl)的吸附较弱,氯化锂(LiCl)的转化效率较低,导致氯基活性材料大量损失。这个问题阻碍了Li-Cl电池的循环性能。在这项工作中,证明了电极表面的协同Cl吸附和LiCl反应的能垒对于提高Cl/LiCl转化效率至关重要。因此,开发了一种具有Co-N配位环境的钴(Co)单原子位点催化剂,它显著降低了固态LiCl颗粒转化为Cl的势垒,同时增强了Cl的化学吸附,促进了LiCl的均匀成核。结果,所开发的Li-Cl@Co-NC电池在高电流密度下极化电压降低了0.6 V,有效解决了Cl和LiCl之间转化效率低的问题。在室温下,Li-Cl@Co-NC电池在1500 mA g下实现了600多次循环;在-40°C时,在500 mA g下达到650次循环。该研究克服了高电流Li-Cl电池的循环稳定性障碍,并为宽温度范围和长循环寿命的电池提供了一种策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验