Department of Chemistry and Bio-X, Stanford University, Stanford, California94305, United States.
Department of Chemical Engineering, National Chung Cheng University, Chia-Yi62102, Taiwan.
J Am Chem Soc. 2022 Dec 14;144(49):22505-22513. doi: 10.1021/jacs.2c07826. Epub 2022 Nov 30.
Developing new types of high-capacity and high-energy density rechargeable batteries is important to future generations of consumer electronics, electric vehicles, and mass energy storage applications. Recently, we reported ∼3.5 V sodium/chlorine (Na/Cl) and lithium/chlorine (Li/Cl) batteries with up to 1200 mAh g reversible capacity, using either a Na or a Li metal as the negative electrode, an amorphous carbon nanosphere (aCNS) as the positive electrode, and aluminum chloride (AlCl) dissolved in thionyl chloride (SOCl) with fluoride-based additives as the electrolyte [Zhu et al., , , (7873), 525-530]. The high surface area and large pore volume of aCNS in the positive electrode facilitated NaCl or LiCl deposition and trapping of Cl for reversible NaCl/Cl or LiCl/Cl redox reactions and battery discharge/charge cycling. Here, we report an initially low surface area/porosity graphite (DGr) material as the positive electrode in a Li/Cl battery, attaining high battery performance after activation in carbon dioxide (CO) at 1000 °C (DGr_ac) with the first discharge capacity ∼1910 mAh g and a cycling capacity up to 1200 mAh g. Ex situ Raman spectroscopy and X-ray diffraction (XRD) revealed the evolution of graphite over battery cycling, including intercalation/deintercalation and exfoliation that generated sufficient pores for hosting LiCl/Cl redox. This work opens up widely available, low-cost graphitic materials for high-capacity alkali metal/Cl batteries. Lastly, we employed mass spectrometry to probe the Cl trapped in the graphitic positive electrode, shedding light into the Li/Cl battery operation.
开发新型高容量、高能量密度可充电电池对于未来的消费电子产品、电动汽车和大规模储能应用至关重要。最近,我们报道了使用钠/氯(Na/Cl)和锂/氯(Li/Cl)电池,在使用钠或锂金属作为负极、非晶态碳纳米球(aCNS)作为正极、以及氯化铝(AlCl)溶解在含有氟基添加剂的二氯亚砜(SOCl)中的电解质的情况下,其可逆容量高达 1200 mAh g-1,实现了约 3.5 V 的工作电压。正极中 aCNS 的高表面积和大孔体积有利于 NaCl 或 LiCl 的沉积和 Cl 的捕获,从而实现可逆的 NaCl/Cl 或 LiCl/Cl 氧化还原反应和电池的充放电循环。在此,我们报告了一种最初具有低表面积/孔隙率的石墨(DGr)材料作为 Li/Cl 电池的正极,在 1000°C 的二氧化碳(CO)中经过活化(DGr_ac)后,表现出高电池性能,首次放电容量约为 1910 mAh g-1,循环容量高达 1200 mAh g-1。原位拉曼光谱和 X 射线衍射(XRD)揭示了石墨在电池循环过程中的演变,包括插层/脱插层和剥离,这产生了足够的孔来容纳 LiCl/Cl 氧化还原。这项工作为高容量碱金属/Cl 电池开辟了广泛可用、低成本的石墨材料。最后,我们采用质谱法探测石墨正极中捕获的 Cl,揭示了 Li/Cl 电池的工作原理。