Wimba Patient, Diallo Aboubacar, Klich Amna, Tshilolo Léon, Iwaz Jean, Étard Jean François, Vanhems Philippe, Ecochard René, Rabilloud Muriel
Université Lyon 1, Villeurbanne, France.
Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, Lyon, France.
IJID Reg. 2025 Jan 25;14:100574. doi: 10.1016/j.ijregi.2025.100574. eCollection 2025 Mar.
The objective was to study the epidemic wave curves, according to the characteristics of the countries, to identify the differences and the predictive factors of evolution.
We have carried out modeling of the COVID-19 epidemic data from validated databases for 53 African countries.
All countries recorded at least four waves. The duration of the waves had decreased over time ( <0.001) and extended with the rainy season ( = 0.03). The incidence rates were higher for countries with the best development indicators ( <0.001). Positive spatial autocorrelation was significant for all wave characteristics, except for relative amplitude at the end of the wave. The time-adjusted multivariate analysis identified seasons for duration ( = 0.017) and human development index for peak incidence rate ( <0.001) and relative amplitude at the end of the wave ( = 0.041) as predictors of wave characteristics.
The duration of the waves was influenced by the seasons and the study periods, the incidences by the economic development, and health indicators. The appearance of new variants seemed associated with the start of the waves. None of the factors studied is associated with an inflection and a decrease in the curve.
根据各国特征研究疫情波曲线,以识别差异及演变的预测因素。
我们对来自53个非洲国家经过验证的数据库中的新冠疫情数据进行了建模。
所有国家至少记录到四波疫情。波的持续时间随时间减少(<0.001),并随雨季延长(=0.03)。发展指标最佳的国家发病率更高(<0.001)。除波末相对振幅外,所有波特征的正空间自相关均显著。时间调整后的多变量分析确定季节影响波的持续时间(=0.017),人类发展指数影响发病率峰值(<0.001)以及波末相对振幅(=0.041),这些是波特征的预测因素。
波的持续时间受季节和研究时期影响,发病率受经济发展和健康指标影响。新变种的出现似乎与波的开始有关。所研究的因素均与曲线的拐点和下降无关。