Suppr超能文献

旨在验证用于区分伤害性疼痛、神经性疼痛和神经病理性疼痛的临床测量方法:慢性肌肉骨骼疼痛队列的聚类分析

Toward Validation of Clinical Measures to Discriminate Between Nociceptive, Neuropathic, and Nociplastic Pain: Cluster Analysis of a Cohort With Chronic Musculoskeletal Pain.

作者信息

Hodges Paul W, Sanchez Raimundo, Pritchard Shane, Turnbull Adam, Hahne Andrew, Ford Jon

机构信息

The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Qld.

Advance Healthcare, Dandenong South.

出版信息

Clin J Pain. 2025 May 1;41(5):e1281. doi: 10.1097/AJP.0000000000001281.

Abstract

OBJECTIVES

The International Association for the Study of Pain defines 3 pain types presumed to involve different mechanisms-nociceptive, neuropathic, and nociplastic. Based on the hypothesis that pain types should guide the matching of patients with treatments, work has been undertaken to identify features to discriminate between them for clinical use. This study aimed to evaluate the validity of features to discriminate between pain types.

MATERIALS AND METHODS

Subjective and physical features were evaluated in a cohort of 350 individuals with chronic musculoskeletal pain attending a chronic pain management program. The analysis tested the hypothesis that, if features nominated for each pain type represent 3 different groups, then (1) cluster analysis should identify 3 main clusters of patients, (2) these clusters should align with the pain type allocated by an experienced clinician, (3) patients within a cluster should have high expression of the candidate features proposed to assist identification of that pain type. Supervised machine learning interrogated features with the greatest and least importance for discrimination, and probabilistic analysis probed the potential for the coexistence of multiple pain types.

RESULTS

Results confirmed that data could be best explained by 3 clusters. Clusters were characterized by a priori specified features and agreed with the designation of the experienced clinician with 82% accuracy. Supervised analysis highlighted features that contributed most and least to the classification of pain type, and probabilistic analysis reinforced the presence of mixed pain types.

DISCUSSION

These findings support the foundation for further refinement of a clinical tool to discriminate between pain types.

摘要

目的

国际疼痛研究协会定义了3种推测涉及不同机制的疼痛类型——伤害性疼痛、神经性疼痛和神经可塑性疼痛。基于疼痛类型应指导患者与治疗方法匹配的假设,已开展工作以确定用于临床区分它们的特征。本研究旨在评估区分疼痛类型的特征的有效性。

材料与方法

在参加慢性疼痛管理项目的350名慢性肌肉骨骼疼痛患者队列中评估主观和身体特征。分析检验了以下假设:如果为每种疼痛类型指定的特征代表3个不同的组,那么(1)聚类分析应识别出3个主要的患者聚类;(2)这些聚类应与经验丰富的临床医生分配的疼痛类型一致;(3)聚类中的患者应具有为协助识别该疼痛类型而提出的候选特征的高表达。监督式机器学习研究了对区分最重要和最不重要的特征,概率分析探究了多种疼痛类型共存的可能性。

结果

结果证实数据可以用3个聚类得到最佳解释。聚类以先验指定的特征为特征,与经验丰富的临床医生的诊断一致,准确率为82%。监督式分析突出了对疼痛类型分类贡献最大和最小的特征,概率分析强化了混合疼痛类型的存在。

讨论

这些发现为进一步完善区分疼痛类型的临床工具奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c302/11977537/7fbf8e06d14d/ajp-41-e1281-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验