Tuna Yazgan, Al-Hiyasat Amer, Kashkanova Anna D, Dechant Andreas, Lutz Eric, Sandoghdar Vahid
Max Planck Institute for the Science of Light, 91058 Erlangen, Germany.
Department of Physics, Friedrich-Alexander University, 91058 Erlangen, Germany.
ACS Nano. 2025 Mar 18;19(10):10173-10179. doi: 10.1021/acsnano.4c17299. Epub 2025 Mar 4.
In the past decades, many techniques have been explored for trapping microscopic and nanoscopic objects, but the investigation of nano-objects under arbitrary forces and conditions remains nontrivial. One fundamental case concerns the motion of a particle under a constant force, known as . Here, we employ metallic nanoribbons embedded in a glass substrate in a capacitor configuration to generate a constant electric field on a charged nanoparticle in a water-filled glass nanochannel. We estimate the force fields from Brownian trajectories over several micrometers and confirm the constant behavior of the forces both numerically and experimentally. Furthermore, we manipulate the diffusion and relaxation times of the nanoparticles by tuning the charge density on the electrode. Our highly compact and controllable setting allows for the trapping and force-clamping of charged nanoparticles in a solution, providing a platform for investigating nanoscopic diffusion phenomena.
在过去几十年中,人们探索了许多捕获微观和纳米物体的技术,但在任意力和条件下对纳米物体的研究仍然具有挑战性。一个基本情况涉及粒子在恒定力作用下的运动,即 。在这里,我们采用嵌入玻璃基板中的金属纳米带,以电容器配置在充满水的玻璃纳米通道中的带电纳米粒子上产生恒定电场。我们从几微米的布朗轨迹估计力场,并通过数值和实验证实了力的恒定特性。此外,我们通过调节电极上的电荷密度来操纵纳米粒子的扩散和弛豫时间。我们高度紧凑且可控的装置允许在溶液中捕获和力钳制带电纳米粒子,为研究纳米扩散现象提供了一个平台。