Flach Rachel N, van Dooijeweert Carmen, Nguyen Tri Q, Lynch Mitchell, Jonges Trudy N, Meijer Richard P, Suelmann Britt B M, Willemse Peter-Paul M, Stathonikos Nikolas, van Diest Paul J
Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands.
Department of Oncological Urology, University Medical Center Utrecht, Utrecht, the Netherlands.
JCO Clin Cancer Inform. 2025 Mar;9:e2400193. doi: 10.1200/CCI-24-00193. Epub 2025 Mar 4.
Pathologists diagnose prostate cancer (PCa) on hematoxylin and eosin (HE)-stained sections of prostate needle biopsies (PBx). Some laboratories use costly immunohistochemistry (IHC) for all cases to optimize workflow, often exceeding reimbursement for the full specimen. Despite the rise in digital pathology and artificial intelligence (AI) algorithms, clinical implementation studies are scarce. This prospective clinical trial evaluated whether an AI-assisted workflow for detecting PCa in PBx reduces IHC use while maintaining diagnostic safety standards.
Patients suspected of PCa were allocated biweekly to either a control or intervention arm. In the control arm, pathologists assessed whole-slide images (WSI) of PBx using HE and IHC stainings. In the intervention arm, pathologists used the Paige Prostate Detect AI algorithm on HE slides, requesting IHC only as needed. IHC was requested for all morphologically negative slides in the AI arm. The main outcome was the relative risk (RR) of IHC use per detected PCa case at both patient and WSI levels.
Overall, 143 of 237 (60.3%) slides of 64 of 82 patients contained PCa (78.0%). AI assistance significantly reduced the risk of IHC use per detected PCa case at both the patient level (RR, 0.55; 95% CI, 0.39 to 0.72) and slide level (RR, 0.41; 95% CI, 0.29 to 0.52). Cost reductions on IHC were €1,700 for the trial, at €50 per IHC stain. AI-assisted pathologists reported higher confidence in their diagnoses (80% 56% confident or high confidence). The median assessment time per HE slide showed no significant difference between the AI-assisted and control arms (139 seconds 112 seconds; = .2).
This study demonstrates that AI assistance for PCa detection in PBx significantly reduces IHC costs while maintaining diagnostic safety standards, supporting the business case for AI implementation in PCa detection.
病理学家通过前列腺穿刺活检(PBx)苏木精-伊红(HE)染色切片诊断前列腺癌(PCa)。一些实验室对所有病例都使用成本高昂的免疫组织化学(IHC)来优化工作流程,费用常常超过整个标本的报销额度。尽管数字病理学和人工智能(AI)算法有所发展,但临床应用研究却很匮乏。这项前瞻性临床试验评估了用于检测PBx中PCa的AI辅助工作流程是否能在维持诊断安全标准的同时减少IHC的使用。
疑似患有PCa的患者每两周被分配至对照组或干预组。在对照组中,病理学家使用HE和IHC染色评估PBx的全切片图像(WSI)。在干预组中,病理学家在HE切片上使用Paige Prostate Detect AI算法,仅在需要时要求进行IHC检测。对AI组中所有形态学上为阴性的切片都要求进行IHC检测。主要结果是在患者和WSI层面上,每例检测到的PCa病例使用IHC的相对风险(RR)。
总体而言,82例患者中的64例共237张切片中有143张(60.3%)含有PCa(78.0%)。AI辅助在患者层面(RR,0.55;95%CI,0.39至0.72)和切片层面(RR,0.41;95%CI,0.29至0.52)均显著降低了每例检测到的PCa病例使用IHC的风险。IHC检测费用每例50欧元,该试验中IHC检测费用降低了1700欧元。AI辅助的病理学家对其诊断的信心更高(80% 56%有信心或高度有信心)。HE切片的中位评估时间在AI辅助组和对照组之间无显著差异(139秒 112秒; = 0.2)。
本研究表明,PBx中PCa检测的AI辅助在维持诊断安全标准的同时显著降低了IHC成本,支持了在PCa检测中实施AI的商业理由。