Suppr超能文献

新型人工智能系统提高了在核心针活检的全切片图像中前列腺癌的检出率。

Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies.

机构信息

Paige.AI, 11 East Loop Road, FL5, New York, NY, 10044, USA.

Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.

出版信息

Mod Pathol. 2020 Oct;33(10):2058-2066. doi: 10.1038/s41379-020-0551-y. Epub 2020 May 11.

Abstract

Prostate cancer (PrCa) is the second most common cancer among men in the United States. The gold standard for detecting PrCa is the examination of prostate needle core biopsies. Diagnosis can be challenging, especially for small, well-differentiated cancers. Recently, machine learning algorithms have been developed for detecting PrCa in whole slide images (WSIs) with high test accuracy. However, the impact of these artificial intelligence systems on pathologic diagnosis is not known. To address this, we investigated how pathologists interact with Paige Prostate Alpha, a state-of-the-art PrCa detection system, in WSIs of prostate needle core biopsies stained with hematoxylin and eosin. Three AP-board certified pathologists assessed 304 anonymized prostate needle core biopsy WSIs in 8 hours. The pathologists classified each WSI as benign or cancerous. After ~4 weeks, pathologists were tasked with re-reviewing each WSI with the aid of Paige Prostate Alpha. For each WSI, Paige Prostate Alpha was used to perform cancer detection and, for WSIs where cancer was detected, the system marked the area where cancer was detected with the highest probability. The original diagnosis for each slide was rendered by genitourinary pathologists and incorporated any ancillary studies requested during the original diagnostic assessment. Against this ground truth, the pathologists and Paige Prostate Alpha were measured. Without Paige Prostate Alpha, pathologists had an average sensitivity of 74% and an average specificity of 97%. With Paige Prostate Alpha, the average sensitivity for pathologists significantly increased to 90% with no statistically significant change in specificity. With Paige Prostate Alpha, pathologists more often correctly classified smaller, lower grade tumors, and spent less time analyzing each WSI. Future studies will investigate if similar benefit is yielded when such a system is used to detect other forms of cancer in a setting that more closely emulates real practice.

摘要

前列腺癌(PrCa)是美国男性中第二常见的癌症。检测 PrCa 的金标准是前列腺针芯活检的检查。诊断具有挑战性,尤其是对于小而分化良好的癌症。最近,机器学习算法已被开发用于使用全幻灯片图像(WSI)检测 PrCa,具有较高的测试准确性。然而,这些人工智能系统对病理诊断的影响尚不清楚。为了解决这个问题,我们研究了病理学家如何在苏木精和伊红染色的前列腺针芯活检 WSI 中与 Paige Prostate Alpha 这种最先进的 PrCa 检测系统进行交互。三名具有 AP 委员会认证的病理学家在 8 小时内评估了 304 张匿名前列腺针芯活检 WSI。病理学家将每个 WSI 分类为良性或恶性。大约 4 周后,病理学家被要求在 Paige Prostate Alpha 的帮助下重新审查每个 WSI。对于每个 WSI,Paige Prostate Alpha 用于进行癌症检测,并且对于检测到癌症的 WSI,系统用最高概率标记癌症检测到的区域。每个幻灯片的原始诊断由泌尿生殖系统病理学家进行,并纳入在原始诊断评估期间要求的任何辅助研究。根据这一事实,对病理学家和 Paige Prostate Alpha 进行了测量。没有 Paige Prostate Alpha,病理学家的平均敏感性为 74%,特异性为 97%。使用 Paige Prostate Alpha,病理学家的平均敏感性显著增加到 90%,特异性没有统计学上的显著变化。使用 Paige Prostate Alpha,病理学家更经常正确地分类较小、较低等级的肿瘤,并且分析每个 WSI 的时间更少。未来的研究将调查在更接近实际实践的环境中使用此类系统检测其他形式的癌症是否会产生类似的益处。

相似文献

引用本文的文献

本文引用的文献

1
False-Negative Histopathologic Diagnosis of Prostatic Adenocarcinoma.前列腺腺癌的假阴性组织病理学诊断。
Arch Pathol Lab Med. 2020 Mar;144(3):326-334. doi: 10.5858/arpa.2019-0456-RA. Epub 2019 Nov 15.
9
Prostate Cancer Screening.前列腺癌筛查
Med Clin North Am. 2018 Mar;102(2):199-214. doi: 10.1016/j.mcna.2017.11.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验