Suppr超能文献

通过深度学习方法从超声心动图预测法洛四联症患者心脏磁共振成像得出的射血分数

Predicting Cardiac Magnetic Resonance-Derived Ejection Fraction from Echocardiogram Via Deep Learning Approach in Tetralogy of Fallot.

作者信息

Adhikari Arnav, Wesley G Vick, Nguyen Minh B, Doan Tam T, Rao Mounica Y, Parthiban Anitha, Patterson Lance, Adhikari Kashika, Ouyang David, Heinle Jeffery S, Wadhwa Lalita

机构信息

Texas Children'S Hospital, Baylor College of Medicine, Houston, TX, USA.

Cedars-Sinai Medical Center, Stanford University, Los Angeles, CA, USA.

出版信息

Pediatr Cardiol. 2025 Mar 4. doi: 10.1007/s00246-025-03802-y.

Abstract

Systolic function assessment is essential in children with congenital heart disease. Traditional methods of echocardiographic left ventricular ejection fraction (LVEF) estimation might overestimate systolic function compared to the gold standard of cardiac magnetic resonance imaging (CMR), especially in Tetralogy of Fallot (TOF). Deep learning technologies such as EchoNet-Dynamic offer more consistent cardiac evaluations and can potentially accurately predict LVEF using echocardiographic videos. The EchoNet-Dynamic/EchoNet-Peds models predict LVEF using echocardiograms with expert-measured LVEF as the ground truth. Using a transfer learning approach, we fine-tuned this model to predict LVEF with CMR-derived LVEF as ground truth and TOF echocardiograms as input images. For echocardiograms in the PSAX view, the model predicted CMR LVEF with an R2 of 0.79 and an MAE of 4.41. For the A4C view, the model predicted CMR LVEF with an R2 of 0.53 and an MAE of 6.4. Plotted ROC curves indicate that both tuned models differentiated well between normal and reduced LVEF. This study shows the potential of Convolutional Neural Network (CNN) models in transforming the field of cardiac imaging interpretation via a hybrid approach using the CMR labels and echocardiogram videos offering advancements over conventional methods.

摘要

收缩功能评估对于先天性心脏病患儿至关重要。与心脏磁共振成像(CMR)这一金标准相比,传统的超声心动图左心室射血分数(LVEF)估计方法可能会高估收缩功能,尤其是在法洛四联症(TOF)中。诸如EchoNet-Dynamic这样的深度学习技术能提供更一致的心脏评估,并且有可能使用超声心动图视频准确预测LVEF。EchoNet-Dynamic/EchoNet-Peds模型使用超声心动图预测LVEF,并将专家测量的LVEF作为基准真值。我们采用迁移学习方法,以CMR衍生的LVEF作为基准真值,以TOF超声心动图作为输入图像,对该模型进行微调以预测LVEF。对于短轴观(PSAX)的超声心动图,该模型预测CMR LVEF的R2为0.79,平均绝对误差(MAE)为4.41。对于四腔观(A4C),该模型预测CMR LVEF的R2为0.53,MAE为6.4。绘制的ROC曲线表明,两个经过微调的模型在正常LVEF和降低的LVEF之间都有很好的区分度。这项研究显示了卷积神经网络(CNN)模型通过使用CMR标签和超声心动图视频这种混合方法在改变心脏成像解读领域方面的潜力,相较于传统方法有了进步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验