Suppr超能文献

人工智能赋能的超声心动图解读:最新综述

Artificial Intelligence (AI)-Empowered Echocardiography Interpretation: A State-of-the-Art Review.

作者信息

Akkus Zeynettin, Aly Yousof H, Attia Itzhak Z, Lopez-Jimenez Francisco, Arruda-Olson Adelaide M, Pellikka Patricia A, Pislaru Sorin V, Kane Garvan C, Friedman Paul A, Oh Jae K

机构信息

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

J Clin Med. 2021 Mar 30;10(7):1391. doi: 10.3390/jcm10071391.

Abstract

Echocardiography (Echo), a widely available, noninvasive, and portable bedside imaging tool, is the most frequently used imaging modality in assessing cardiac anatomy and function in clinical practice. On the other hand, its operator dependability introduces variability in image acquisition, measurements, and interpretation. To reduce these variabilities, there is an increasing demand for an operator- and interpreter-independent Echo system empowered with artificial intelligence (AI), which has been incorporated into diverse areas of clinical medicine. Recent advances in AI applications in computer vision have enabled us to identify conceptual and complex imaging features with the self-learning ability of AI models and efficient parallel computing power. This has resulted in vast opportunities such as providing AI models that are robust to variations with generalizability for instantaneous image quality control, aiding in the acquisition of optimal images and diagnosis of complex diseases, and improving the clinical workflow of cardiac ultrasound. In this review, we provide a state-of-the art overview of AI-empowered Echo applications in cardiology and future trends for AI-powered Echo technology that standardize measurements, aid physicians in diagnosing cardiac diseases, optimize Echo workflow in clinics, and ultimately, reduce healthcare costs.

摘要

超声心动图(Echo)是一种广泛可用、无创且便于携带的床边成像工具,是临床实践中评估心脏解剖结构和功能时最常用的成像方式。另一方面,其对操作者的依赖性导致图像采集、测量和解读存在变异性。为减少这些变异性,对具备人工智能(AI)的独立于操作者和解读人员的超声心动图系统的需求日益增加,人工智能已被应用于临床医学的各个领域。计算机视觉中人工智能应用的最新进展使我们能够利用人工智能模型的自学习能力和高效的并行计算能力识别概念性和复杂的成像特征。这带来了诸多巨大机遇,例如提供对变化具有鲁棒性且具有通用性的人工智能模型以进行即时图像质量控制,辅助获取最佳图像和诊断复杂疾病,以及改善心脏超声的临床工作流程。在本综述中,我们对人工智能赋能的超声心动图在心脏病学中的应用现状以及人工智能驱动的超声心动图技术的未来趋势进行了概述,这些技术可实现测量标准化、协助医生诊断心脏病、优化临床超声心动图工作流程,并最终降低医疗成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466a/8037652/73c6bf049df8/jcm-10-01391-g001.jpg

相似文献

3
Artificial Intelligence Empowered Nuclear Medicine and Molecular Imaging in Cardiology: A State-of-the-Art Review.
Phenomics. 2023 Dec 5;3(6):586-596. doi: 10.1007/s43657-023-00137-7. eCollection 2023 Dec.
4
Embracing AI: The Imperative Tool for Echo Labs to Stay Ahead of the Curve.
Diagnostics (Basel). 2023 Oct 6;13(19):3137. doi: 10.3390/diagnostics13193137.
5
Artificial intelligence: improving the efficiency of cardiovascular imaging.
Expert Rev Med Devices. 2020 Jun;17(6):565-577. doi: 10.1080/17434440.2020.1777855. Epub 2020 Jun 16.
6
Routine Echocardiography and Artificial Intelligence Solutions.
Front Cardiovasc Med. 2021 Feb 23;8:648877. doi: 10.3389/fcvm.2021.648877. eCollection 2021.
7
Steps to use artificial intelligence in echocardiography.
J Echocardiogr. 2021 Mar;19(1):21-27. doi: 10.1007/s12574-020-00496-4. Epub 2020 Oct 12.
8
Artificial Intelligence Models for Heart Chambers Segmentation from 2D Echocardiographic Images: A Scoping Review.
Stud Health Technol Inform. 2022 Jan 14;289:264-267. doi: 10.3233/SHTI210910.
9
The Role of Artificial Intelligence in Echocardiography: A Clinical Update.
Curr Cardiol Rep. 2023 Dec;25(12):1897-1907. doi: 10.1007/s11886-023-02005-2. Epub 2023 Dec 13.
10
The Role of Artificial Intelligence in Echocardiography.
J Imaging. 2023 Feb 20;9(2):50. doi: 10.3390/jimaging9020050.

引用本文的文献

1
Clinical research and trials in echocardiography: rationale, requirements and future opportunities.
Echo Res Pract. 2025 Aug 11;12(1):20. doi: 10.1186/s44156-025-00083-2.
2
Leveraging Comprehensive Echo Data to Power Artificial Intelligence Models for Handheld Cardiac Ultrasound.
Mayo Clin Proc Digit Health. 2025 Jan 10;3(1):100194. doi: 10.1016/j.mcpdig.2025.100194. eCollection 2025 Mar.
4
AI in Echocardiography: State-of-the-art Automated Measurement Techniques and Clinical Applications.
JMA J. 2025 Jan 15;8(1):141-150. doi: 10.31662/jmaj.2024-0180. Epub 2024 Dec 6.
5
Recent Advances in the Management of Non-rheumatic Atrial Fibrillation: A Comprehensive Review.
Cureus. 2024 Jul 31;16(7):e65835. doi: 10.7759/cureus.65835. eCollection 2024 Jul.
6
Artificial Intelligence in the Screening, Diagnosis, and Management of Aortic Stenosis.
Rev Cardiovasc Med. 2024 Jan 17;25(1):31. doi: 10.31083/j.rcm2501031. eCollection 2024 Jan.
7
Innovative applications of artificial intelligence in zoonotic disease management.
Sci One Health. 2023 Nov 3;2:100045. doi: 10.1016/j.soh.2023.100045. eCollection 2023.
8
Artificial Intelligence in Echocardiography: The Time is Now.
Rev Cardiovasc Med. 2022 Jul 19;23(8):256. doi: 10.31083/j.rcm2308256. eCollection 2022 Aug.
9
Transforming Echocardiography: The Role of Artificial Intelligence in Enhancing Diagnostic Accuracy and Accessibility.
Intern Med. 2025 Feb 1;64(3):331-336. doi: 10.2169/internalmedicine.4171-24. Epub 2024 Jul 25.
10
Fully automatic estimation of global left ventricular systolic function using deep learning in transoesophageal echocardiography.
Eur Heart J Imaging Methods Pract. 2023 Jul 4;1(1):qyad007. doi: 10.1093/ehjimp/qyad007. eCollection 2023 May.

本文引用的文献

1
Fully Automated Segmentation of Head CT Neuroanatomy Using Deep Learning.
Radiol Artif Intell. 2020 Sep 30;2(5):e190183. doi: 10.1148/ryai.2020190183. eCollection 2020 Sep.
2
Harnessing Machine Intelligence in Automatic Echocardiogram Analysis: Current Status, Limitations, and Future Directions.
IEEE Rev Biomed Eng. 2021;14:181-203. doi: 10.1109/RBME.2020.2988295. Epub 2021 Jan 22.
3
Video-based AI for beat-to-beat assessment of cardiac function.
Nature. 2020 Apr;580(7802):252-256. doi: 10.1038/s41586-020-2145-8. Epub 2020 Mar 25.
4
Deep learning interpretation of echocardiograms.
NPJ Digit Med. 2020 Jan 24;3:10. doi: 10.1038/s41746-019-0216-8. eCollection 2020.
5
A Generic Quality Control Framework for Fetal Ultrasound Cardiac Four-Chamber Planes.
IEEE J Biomed Health Inform. 2020 Apr;24(4):931-942. doi: 10.1109/JBHI.2019.2948316. Epub 2019 Oct 18.
7
A Deep Learning Approach for Assessment of Regional Wall Motion Abnormality From Echocardiographic Images.
JACC Cardiovasc Imaging. 2020 Feb;13(2 Pt 1):374-381. doi: 10.1016/j.jcmg.2019.02.024. Epub 2019 May 15.
8
Automatic biplane left ventricular ejection fraction estimation with mobile point-of-care ultrasound using multi-task learning and adversarial training.
Int J Comput Assist Radiol Surg. 2019 Jun;14(6):1027-1037. doi: 10.1007/s11548-019-01954-w. Epub 2019 Apr 2.
9
Fast and accurate view classification of echocardiograms using deep learning.
NPJ Digit Med. 2018;1. doi: 10.1038/s41746-017-0013-1. Epub 2018 Mar 21.
10
Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography.
IEEE Trans Med Imaging. 2019 Sep;38(9):2198-2210. doi: 10.1109/TMI.2019.2900516. Epub 2019 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验