Suppr超能文献

统计学习重塑了视觉空间注意力焦点的中心-外周抑制。

Statistical learning re-shapes the center-surround inhibition of the visuo-spatial attentional focus.

作者信息

Massironi Andrea, Lega Carlotta, Ronconi Luca, Bricolo Emanuela

机构信息

Department of Psychology, University of Milano-Bicocca, Piazza Dell'Ateneo Nuovo, 1 - 20126, Milan, Italy.

Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.

出版信息

Sci Rep. 2025 Mar 5;15(1):7656. doi: 10.1038/s41598-025-91949-2.

Abstract

To effectively navigate a crowded and dynamic visual world, our neurocognitive system possesses the remarkable ability to extract and learn its statistical regularities to implicitly guide the allocation of spatial attention resources in the immediate future. The way through which we deploy attention in the visual space has been consistently outlined by a "center-surround inhibition" pattern, wherein a ring of sustained inhibition is projected around the center of the attentional focus to optimize the signal-noise ratio between goal-relevant targets and interfering distractors. While it has been observed that experience-dependent mechanisms could disrupt the inhibitory ring, whether statistical learning of spatial contingencies has an effect on such a surround inhibition and - if any - through which exact mechanisms it unravels are hitherto unexplored questions. Therefore, in a visual search psychophysical experiment, we aimed to fill this gap by entirely mapping the visuo-spatial attentional profile, asking subjects (N = 26) to detect and report the gap orientation of a 'C' letter appearing either as a color singleton (Baseline Condition) or as a non-salient probe (Probe Condition) - among other irrelevant objects - at progressively increasing probe-to-singleton distances. Critically, we manipulated the color singleton spatial contingency so as to make it appear more frequently adjacent to the probe, specifically at a spatial distance where attending the color singleton generates surround-inhibition on the probe, hindering attentional performance. Results showed that statistical learning markedly reshaped the attentional focus, transforming the center-surround inhibition profile into a non-linear gradient one through a performance gain over the high probability probe-to-singleton distance. Noteworthy, such reshaping was uneven in time and asymmetric, as it varied across blocks and specifically appeared only within manipulated visual quadrants, leaving unaltered the unmanipulated ones. Our findings offer insights of theoretical interest in understanding how environmental regularities orchestrate the way we allocate attention in space through plastic re-weighting of spatial priority maps. Additionally, going beyond the physical dimension, our data provide interesting implications about how visual information is coded within working memory representations, especially under scenarios of heightened uncertainty.

摘要

为了在拥挤且动态的视觉世界中有效导航,我们的神经认知系统具备卓越的能力,能够提取并学习其统计规律,以隐性地引导未来空间注意力资源的分配。我们在视觉空间中部署注意力的方式一直由一种“中心-外周抑制”模式所勾勒,即在注意力焦点的中心周围投射出一圈持续的抑制,以优化目标相关目标与干扰性分心物之间的信噪比。虽然已经观察到经验依赖机制可能会破坏抑制环,但空间偶然性的统计学习是否会对这种外周抑制产生影响,以及如果有影响,它是通过何种确切机制来实现的,这些问题迄今为止尚未得到探索。因此,在一项视觉搜索心理物理学实验中,我们旨在通过全面绘制视觉空间注意力分布图来填补这一空白,要求受试者(N = 26)在其他无关物体中检测并报告以颜色单一物(基线条件)或非显著探针(探针条件)形式出现的“C”字母的缺口方向,且探针与单一物之间的距离逐渐增加。关键的是,我们操纵了颜色单一物的空间偶然性,使其更频繁地出现在探针附近,特别是在一个空间距离上,此时关注颜色单一物会对探针产生外周抑制,从而阻碍注意力表现。结果表明,统计学习显著重塑了注意力焦点,通过在高概率探针与单一物距离上的表现提升,将中心-外周抑制分布图转变为非线性梯度分布图。值得注意的是,这种重塑在时间上是不均匀的且不对称的,因为它在不同组块中有所变化,并且具体仅出现在被操纵的视觉象限内,而未被操纵的象限则保持不变。我们的研究结果为理解环境规律如何通过空间优先级地图的可塑性重新加权来协调我们在空间中分配注意力的方式提供了具有理论意义的见解。此外,超越物理维度,我们的数据对于视觉信息在工作记忆表征中如何编码,特别是在不确定性增加的情况下,提供了有趣的启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8e4/11880339/3ce944a650b7/41598_2025_91949_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验