Suppr超能文献

用于增强光动力诱导免疫治疗的级联充电巨噬细胞仿生钌基纳米电池

Cascade-recharged macrophage-biomimetic ruthenium-based nanobattery for enhanced photodynamic-induced immunotherapy.

作者信息

Xia Guoyu, Fan Zhongxiong, Wang Qingluo, Li Jianmin, Zhang Yuxiang, Aipire Adila, Su Qiurong, Li Ying, Hou Zhenqing, Li Jinyao

机构信息

School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China.

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.

出版信息

J Nanobiotechnology. 2025 Mar 4;23(1):167. doi: 10.1186/s12951-025-03255-8.

Abstract

Photodynamic-induced immunotherapy (PDI) is often hampered by low reactive oxygen species (ROS) yield, intra-tumor hypoxia, high glutathione (GSH) concentration, and immunosuppressive microenvironment. In view of this, a ruthenium (Ru)-based nanobattery (termed as IRD) with cascade-charged oxygen (O), ROS, and photodynamic-induced immunotherapy by coordination-driven self-assembly of transition-metal Ru, photosensitizer indocyanine green (ICG), and organic ligand dithiobispropionic acid (DTPA). Then, IRD is camouflaged with macrophage membranes to obtain a nanobattery (termed as IRD@M) with targeting and immune evasion capabilities. Upon intravenous administration, IRD@M with a core-shell structure, nano diameter, and good stability can specifically hoard in tumor location and internalize into tumor cells. Upon disassembly triggered by GSH, the released Ru³⁺ not only catalyzes the conversion of endogenous hydrogen peroxide (H₂O₂) into O₂ to alleviate tumor hypoxia and reduce the expression of hypoxia-inducible factor-1α (HIF-1α), but also generates hydroxyl radicals (·OH) to elevate intracellular ROS levels. This process significantly enhances the photodynamic therapy (PDT) efficacy of the released ICG. Meanwhile, the released DTPA can significantly downregulate overexpressed GSH to reduce the elimination of ROS deriving from PDT by the exchange reaction of thiol-disulfide bond. It is also found that alleviating the hypoxic tumor microenvironment synergistically enhances the PDT efficacy, which in turn cascades to recharge the subsequent immune response, significantly improving the immunosuppressive tumor microenvironment and activating systemic tumor-specific immunity. Notably, in vitro and in vivo experimental results jointly confirm that such cascade-recharged macrophage-biomimetic Ru-based nanobattery IRD@M can achieve an obvious tumor elimination while results in a minimized side effect. Taken together, this work highlights a promising strategy for simple, flexible, and effective Ru-based immunogenic cell death (ICD) agents within PDI.

摘要

光动力诱导免疫疗法(PDI)常常受到活性氧(ROS)产量低、肿瘤内缺氧、高谷胱甘肽(GSH)浓度和免疫抑制微环境的阻碍。鉴于此,通过过渡金属钌(Ru)、光敏剂吲哚菁绿(ICG)和有机配体二硫代双丙酸(DTPA)的配位驱动自组装,构建了一种具有级联充氧(O)、ROS和光动力诱导免疫疗法的钌(Ru)基纳米电池(称为IRD)。然后,用巨噬细胞膜对IRD进行伪装,以获得具有靶向和免疫逃逸能力的纳米电池(称为IRD@M)。静脉注射后,具有核壳结构、纳米尺寸和良好稳定性的IRD@M可以特异性地积聚在肿瘤部位并内化到肿瘤细胞中。在GSH触发IRD@M解体后,释放的Ru³⁺不仅催化内源性过氧化氢(H₂O₂)转化为O₂以缓解肿瘤缺氧并降低缺氧诱导因子-1α(HIF-1α)的表达,还产生羟基自由基(·OH)以提高细胞内ROS水平。这一过程显著增强了释放的ICG的光动力疗法(PDT)疗效。同时,释放的DTPA可以显著下调过度表达的GSH,通过硫醇-二硫键交换反应减少PDT产生的ROS的消除。研究还发现,缓解缺氧肿瘤微环境可协同增强PDT疗效,进而级联增强后续免疫反应,显著改善免疫抑制肿瘤微环境并激活全身肿瘤特异性免疫。值得注意的是,体外和体内实验结果共同证实,这种级联充电的巨噬细胞仿生Ru基纳米电池IRD@M能够在副作用最小化的同时实现明显的肿瘤消除。综上所述,这项工作突出了一种在PDI中构建简单、灵活且有效的Ru基免疫原性细胞死亡(ICD)药物的有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b6b/11881368/9519935562ae/12951_2025_3255_Sch1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验