文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于二硫键的肿瘤微环境靶向药物传递系统的研究进展。

Research Progress of Disulfide Bond Based Tumor Microenvironment Targeted Drug Delivery System.

机构信息

Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.

Jilin University School of Pharmaceutical Sciences, Changchun, 130021, People's Republic of China.

出版信息

Int J Nanomedicine. 2024 Jul 24;19:7547-7566. doi: 10.2147/IJN.S471734. eCollection 2024.


DOI:10.2147/IJN.S471734
PMID:39071505
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11283832/
Abstract

Cancer poses a significant threat to human life and health. Chemotherapy is currently one of the effective cancer treatments, but many chemotherapy drugs have cell toxicity, low solubility, poor stability, a narrow therapeutic window, and unfavorable pharmacokinetic properties. To solve the above problems, target drug delivery to tumor cells, and reduce the side effects of drugs, an anti-tumor drug delivery system based on tumor microenvironment has become a focus of research in recent years. The construction of a reduction-sensitive nanomedicine delivery system based on disulfide bonds has attracted much attention. Disulfide bonds have good reductive responsiveness and can effectively target the high glutathione (GSH) levels in the tumor environment, enabling precise drug delivery. To further enhance targeting and accelerate drug release, disulfide bonds are often combined with pH-responsive nanocarriers and highly expressed ligands in tumor cells to construct drug delivery systems. Disulfide bonds can connect drug molecules and polymer molecules in the drug delivery system, as well as between different drug molecules and carrier molecules. This article summarized the drug delivery systems (DDS) that researchers have constructed in recent years based on disulfide bond drug delivery systems targeting the tumor microenvironment, disulfide bond cleavage-triggering conditions, various drug loading strategies, and carrier design. In this review, we also discuss the controlled release mechanisms and effects of these DDS and further discuss the clinical applicability of delivery systems based on disulfide bonds and the challenges faced in clinical translation.

摘要

癌症对人类的生命和健康构成了重大威胁。化疗是目前癌症治疗的有效手段之一,但许多化疗药物具有细胞毒性、低溶解度、差的稳定性、窄治疗窗和不利的药代动力学特性。为了解决上述问题,实现靶向递送到肿瘤细胞,并降低药物的副作用,基于肿瘤微环境的抗肿瘤药物传递系统已成为近年来研究的重点。基于二硫键的还原敏感型纳米药物传递系统的构建引起了广泛关注。二硫键具有良好的还原响应性,可以有效地针对肿瘤环境中高谷胱甘肽(GSH)水平,实现精确的药物传递。为了进一步增强靶向性并加速药物释放,二硫键通常与 pH 响应性纳米载体和肿瘤细胞中高表达的配体结合,构建药物传递系统。二硫键可以连接药物分子和药物传递系统中的聚合物分子,以及不同药物分子和载体分子之间。本文总结了近年来研究人员基于针对肿瘤微环境的二硫键药物传递系统、二硫键断裂触发条件、各种药物装载策略和载体设计构建的药物传递系统(DDS)。在这篇综述中,我们还讨论了这些 DDS 的控制释放机制和效果,并进一步讨论了基于二硫键的传递系统的临床适用性和临床转化所面临的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4d/11283832/677375833b0c/IJN-19-7547-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4d/11283832/0cebbc7a4b1d/IJN-19-7547-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4d/11283832/7dd8281a8b1d/IJN-19-7547-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4d/11283832/0106b34c82e3/IJN-19-7547-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4d/11283832/34c1b5c782eb/IJN-19-7547-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4d/11283832/3de3234cfeb5/IJN-19-7547-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4d/11283832/677375833b0c/IJN-19-7547-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4d/11283832/0cebbc7a4b1d/IJN-19-7547-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4d/11283832/7dd8281a8b1d/IJN-19-7547-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4d/11283832/0106b34c82e3/IJN-19-7547-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4d/11283832/34c1b5c782eb/IJN-19-7547-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4d/11283832/3de3234cfeb5/IJN-19-7547-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4d/11283832/677375833b0c/IJN-19-7547-g0006.jpg

相似文献

[1]
Research Progress of Disulfide Bond Based Tumor Microenvironment Targeted Drug Delivery System.

Int J Nanomedicine. 2024

[2]
Redox-manipulating nanocarriers for anticancer drug delivery: a systematic review.

J Nanobiotechnology. 2024-9-28

[3]
Advances in redox-responsive drug delivery systems of tumor microenvironment.

J Nanobiotechnology. 2018-9-22

[4]
Disulfide bonds as a molecular switch of enzyme-activatable anticancer drug precise release for fluorescence imaging and enhancing tumor therapy.

Talanta. 2024-10-1

[5]
Programmed pH/reduction-responsive nanoparticles for efficient delivery of antitumor agents in vivo.

Acta Biomater. 2018-9-26

[6]
Hyaluronic Acid-Bilirubin Nanoparticles as a Tumor Microenvironment Reactive Oxygen Species-Responsive Nanomedicine for Targeted Cancer Therapy.

Int J Nanomedicine. 2024

[7]
An Integrated Tumor Microenvironment Responsive Polymeric Micelle for Smart Drug Delivery and Effective Drug Release.

Bioconjug Chem. 2021-9-15

[8]
targeted delivery of antibodies into cancer cells with pH-responsive cell-penetrating poly(disulfide)s.

Chem Commun (Camb). 2022-1-27

[9]
Tailored design of NHS-SS-NHS cross-linked chitosan nano-hydrogels for enhanced anti-tumor efficacy by GSH-responsive drug release.

Biomed Mater. 2024-5-30

[10]
Disulfide Bond-Driven Oxidation- and Reduction-Responsive Prodrug Nanoassemblies for Cancer Therapy.

Nano Lett. 2018-5-9

引用本文的文献

[1]
Reductively activated CPP-PROTAC nanocomplexes enhance target degradation efficient cellular uptake.

RSC Chem Biol. 2025-8-25

[2]
Necroptosis in cancer: insight from epigenetic, post-transcriptional and post-translational modifications.

J Hematol Oncol. 2025-7-30

[3]
Dual-Drug Delivery Systems Using Hydrogel-Nanoparticle Composites: Recent Advances and Key Applications.

Gels. 2025-7-3

[4]
The Role of Akkermansia muciniphila in Disease Regulation.

Probiotics Antimicrob Proteins. 2025-7-9

[5]
Surfactant-Enabled Nanocarriers in Breast Cancer Therapy: Targeted Delivery and Multidrug Resistance Reversal.

Pharmaceutics. 2025-6-13

[6]
Antibody-Drug Conjugates (ADCs): current and future biopharmaceuticals.

J Hematol Oncol. 2025-4-30

[7]
Self-assembled nanoplatform-mediated co-delivery of brusatol to sensitize sorafenib for hepatocellular carcinoma treatment.

RSC Adv. 2025-4-14

[8]
Nanotherapeutics induced redox resetting of oxidative and nitrosative stress: targeting glutathione-depletion in cancer.

Nanomedicine (Lond). 2025-5

[9]
Enhancing the Oral Bioavailability of Glutathione Using Innovative Analogue Approaches.

Pharmaceutics. 2025-3-18

[10]
Cascade-recharged macrophage-biomimetic ruthenium-based nanobattery for enhanced photodynamic-induced immunotherapy.

J Nanobiotechnology. 2025-3-4

本文引用的文献

[1]
Disulfide bonds as a molecular switch of enzyme-activatable anticancer drug precise release for fluorescence imaging and enhancing tumor therapy.

Talanta. 2024-10-1

[2]
Gemcitabine-Lipid Conjugate and ONC201 Combination Therapy Effectively Treats Orthotopic Pancreatic Tumor-Bearing Mice.

ACS Appl Mater Interfaces. 2024-6-12

[3]
Glutathione Depletion and Stalwart Anticancer Activity of Metallotherapeutics Inducing Programmed Cell Death: Opening a New Window for Cancer Therapy.

ACS Omega. 2024-4-16

[4]
Receptor Ligand-Free Mesoporous Silica Nanoparticles: A Streamlined Strategy for Targeted Drug Delivery across the Blood-Brain Barrier.

ACS Nano. 2024-5-21

[5]
Construction of glutathione-responsive paclitaxel prodrug nanoparticles for image-guided targeted delivery and breast cancer therapy.

RSC Adv. 2024-4-19

[6]
Four-Drug Therapy for Multiple Myeloma.

N Engl J Med. 2024-4-18

[7]
Polymeric Nanoparticles for Drug Delivery.

Chem Rev. 2024-5-8

[8]
Specific FRET Probes Sensitive to Chitosan-Based Polymeric Micelles Formation, Drug-Loading, and Fine Structural Features.

Polymers (Basel). 2024-3-8

[9]
Design of PD-L1-Targeted Lipid Nanoparticles to Turn on PTEN for Efficient Cancer Therapy.

Adv Sci (Weinh). 2024-6

[10]
Surgery for Oligometastatic Pancreatic Cancer: Defining Biologic Resectability.

Ann Surg Oncol. 2024-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索