Suppr超能文献

理解多光谱自体荧光寿命成像中的偏差:模型对口腔位置敏感吗?

Understanding Bias in Multispectral Autofluorescence Lifetime Imaging: Are Models Sensitive to Oral Location?

作者信息

Caughlin Kayla, Martinez Rodrigo Cuenca, Tortorelli Gabriel P, Higgins Kathleen E, Faram Ronald, Jo Javier A, Busso Carlos

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-5. doi: 10.1109/EMBC53108.2024.10781827.

Abstract

While bias in artificial intelligence is gaining attention across applications, model fairness is especially concerning in medical applications because a person's health may depend on the model outcome. Sources of bias in medical applications include age, gender, race, and social history. However, in oral cancer diagnosis, the oral location may be a source of bias. Variability in performance based on the oral location has been reported but is not well understood. To help ensure that models perform equitably regardless of location, we design three experiments to study the effect of oral location on model performance. We show that multispectral autofluorescence images retain tissue-type characteristics, but that the tissue-specific information is degraded in lesion images. Furthermore, we show that the tissue-specific features are not disentangled from the disease-associated features. Our results show that automated diagnosis models need to be thoughtfully designed to remove bias from the oral location to ensure equitable performance. Based on these insights, we propose a tissue-specific fine-tuning approach that increases overall performance and lowers the fairness gap by over 5%.Clinical relevance- This paper explores sources of offtarget variance in multispectral autofluorescence images. By understanding sources of bias in multispectral autofluorescence images, fairer and more robust models for oral cancer diagnosis and margin delineation can be developed, leading to greater clinical acceptance and more equitable patient outcomes.

摘要

虽然人工智能中的偏差在各种应用中都受到了关注,但模型公平性在医学应用中尤其令人担忧,因为一个人的健康可能取决于模型的结果。医学应用中的偏差来源包括年龄、性别、种族和社会病史。然而,在口腔癌诊断中,口腔位置可能是一个偏差来源。基于口腔位置的性能差异已有报道,但尚未得到很好的理解。为了确保模型无论在哪个位置都能公平地运行,我们设计了三个实验来研究口腔位置对模型性能的影响。我们表明,多光谱自发荧光图像保留了组织类型特征,但病变图像中的组织特异性信息会退化。此外,我们表明组织特异性特征与疾病相关特征没有分离。我们的结果表明,需要精心设计自动化诊断模型,以消除口腔位置带来的偏差,确保公平的性能。基于这些见解,我们提出了一种组织特异性微调方法,该方法可提高整体性能,并将公平性差距降低5%以上。临床相关性——本文探讨了多光谱自发荧光图像中偏离目标方差的来源。通过了解多光谱自发荧光图像中的偏差来源,可以开发出更公平、更强大的口腔癌诊断和切缘描绘模型,从而提高临床接受度,实现更公平的患者治疗结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验