Suppr超能文献

SACH-Net:用于冠状动脉分割的形状自适应卷积与层次拓扑约束框架

SACH-Net: Shape-Adaptive Convolution and Hierarchical Topology Constraints Framework for Coronary Artery Segmentation.

作者信息

Jin Zhuo, Wu Shaoxuan, Gao Zhizezhang, Xiong Xiaosong, Zhang Xiao, Feng Jun

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10782416.

Abstract

Automatic segmentation of coronary artery is a crucial step in computer-aided diagnosis and treatment planning of coronary artery disease (CAD). A precise coronary artery mask aids clinicians in identifying potential stenosis and determining appropriate interventional treatment, signifying crucial medical importance in the efficient management of CAD. However, existing coronary segmentation methods encounter challenges, manifesting in complications like discontinuity of vessel mask and the mis-segmentation of small branches attributed to the intricate tree-like tubular structure of coronary artery. In this paper, we propose a novel coronary artery segmentation framework (called SACH-Net), which enhances segmentation effect by introducing shape-adaptive convolution (SA-Conv) and hierarchical topology constraints (HTC). Specifically, SA-Conv adjusts the convolution kernel adaptively based on the vessel shape to effectively learn the tree-like tubular feature representation, overcoming challenges posed by the intricate vascular structure. In addition, HTC module is introduced to supervise the feature expression of the network in three dimensions of continuity, overlap, and topological correctness, to alleviate the situation of segmentation fracture and discontinuity. The experimental results on the public dataset ARCADE show that SACH-Net significantly outperforms the state-of-the-art methods in coronary artery segmentation. The code is available at https://github.com/shbc2001/SACH-Net.Clinical Relevance-This research improves the accuracy of coronary segmentation and provides a more comprehensive evaluation, holding promising clinical implications for medical image analysis and healthcare applications.

摘要

冠状动脉的自动分割是冠心病(CAD)计算机辅助诊断和治疗规划中的关键步骤。精确的冠状动脉掩码有助于临床医生识别潜在的狭窄并确定合适的介入治疗方法,这在CAD的有效管理中具有至关重要的医学意义。然而,现有的冠状动脉分割方法面临挑战,表现为血管掩码的不连续性以及小分支的误分割等问题,这是由于冠状动脉复杂的树状管状结构所致。在本文中,我们提出了一种新颖的冠状动脉分割框架(称为SACH-Net),它通过引入形状自适应卷积(SA-Conv)和分层拓扑约束(HTC)来增强分割效果。具体而言,SA-Conv根据血管形状自适应调整卷积核,以有效学习树状管状特征表示,克服复杂血管结构带来的挑战。此外,引入HTC模块从连续性、重叠性和拓扑正确性三个维度监督网络的特征表达,以缓解分割断裂和不连续的情况。在公共数据集ARCADE上的实验结果表明,SACH-Net在冠状动脉分割方面显著优于现有最先进的方法。代码可在https://github.com/shbc2001/SACH-Net获取。临床相关性——本研究提高了冠状动脉分割的准确性并提供了更全面的评估,对医学图像分析和医疗保健应用具有广阔的临床应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验